

Outline

- Some history
- Bohmian Mechanics
- Weak measurement as a probe
- Bohmian trajectories: double-slit interference
- Entangled particles: double double-slit \& nonlocality
- Other quantum features
- Conclusion

Is Quantum Mechanics "The Final Theory"?

1. Is it correct?
2. Is it complete?
3. Are we thinking about it in the best way?

Search for a Deterministic Theory

- EPR (1935): Quantum mechanics is incomplete. We should look for HV's (implicitly: local ones)
- Von Neumann (1932): No deterministic HV theories!
- Bohm (1952): Explicit hidden variable model inspired by De Broglie's pilot wave. Highly non-local.
- Bell (1964): Does every hidden-variable model have to be non-local like Bohm's? (Yes!)

```
    J.S. Bell
CERN - Geneva
    Dedicated to Louis de Broglie
on the occasion of his ninetieth birthday
```

The strange story of the von Neumann impossibility proof is recalled, and the even stranger story of later impossibility proofs, and how the impossible was done by de Broglie and Bohm. Morals are drawn.

Deterministic Extensions to QM

- A deterministic theory must
- Satisfy Bell's theorem (Bell, 1964)
- Exhibit contextuality (Kochen and Specker, 1967)
- Have microscopic superluminal signaling (Colbeck and Renner, 2011)
- Include the wavefunction as a variable (Pusey, Barret, Rudolph, 2012)

ARTICLE
Received 17 Jan 2011 | Accepted 30 Jun 2011 | Published 2 Aug 2011
No extension of quantum theory can have improved predictive power

Roger Colbeck ${ }^{1}$ \& Renato Renner ${ }^{2}$

On the reality of the quantum state Matthew F. Pusey ${ }^{1 \star}$, Jonathan Barrett ${ }^{2}$ and Terry Rudolph ${ }^{1}$

Bohmian Mechanics

- Define R, S real such that $\psi=R e^{i S / h} ; P=R^{2}$
- Schrodinger's equation implies:
- Hamilton-Jacobi equation with a quantum potential
- Continuity equation:

$$
\frac{\partial P}{\partial t}+\nabla \cdot(P \vec{v})=0
$$

- The Bohmian velocity is given by

$$
\vec{v}=\frac{\vec{J}}{P}=\frac{\vec{\nabla} S}{m}
$$

D. Bohm, Phys. Rev. 85, 166 and 180 (1952)

$|\psi|^{2}$

Weak Measurement

- Use a pointer with a big uncertainty (relative to the strength of the measurement interaction)
- Allows one to obtain information, without creating entanglement between system and pointer (effective "collapse")
- Can be used as a tool for probing and understanding subtle quantum features

Aharonov, Albert, Vaidman, PRL 60, 1351 (1988)

Weak Measurement

- Pointer-system interaction:

$$
H=\chi P A
$$

- χT needs to be small

Direct Measurement of the Wavefunction

J. S. Lundeen et al., Nature 474, 188 (2011)

Massachusetts Institute of Technology

Measuring X and P Simultaneously

- Weak measurements can be used to define a "naively observable velocity" (Wiseman, 2007)
- Perform a weak measurement of P, followed by a strong measurement of X :

$$
v(x)=\frac{\langle x| \hat{P}|\psi\rangle}{\langle x \mid \psi\rangle}
$$

- This precisely equals the Bohmian velocity!

$$
v=\frac{j}{P}
$$

Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer

Massachusetts

Momentum Measurement

Massachusetts Institute of Technology

Trajectory Reconstruction

Trajectory Reconstruction

Reconstructed trajectories

Trajectories on top of probability distribution

Double Double-Slit

Braverman and Simon, PRL 110, 060406 (2013)

Nonlocal Trajectories

Bell Tests

- Direct probing of Bohmian trajectories in a Bell test experiment

Contextuality

- Kochen-Specker theorem (1967): Hidden-variable theories must be contextual.
- Let λ be the set of HV's.
- Then, $\hat{A}(\lambda)$ depends on what other commuting observables are measured together with it.

$$
\hat{A}(\lambda,\{\hat{B}, \hat{C}\}) \neq \hat{A}(\lambda,\{\widehat{D}, \hat{E}\})
$$

- Related to the von Neumann proof:

$$
\widehat{A+B}(\lambda) \neq \hat{A}(\lambda)+\hat{B}(\lambda)
$$

Contextuality

- Construct a qutrit analyzer

- Measurements of $|0\rangle,|2\rangle$ are noncontextual
- |1 \rangle is contextual!
- Can directly observe trajectories change

Surrealistic Bohm Trajectories

Berthold-Georg Englert ${ }^{1.2}$, Marlan O. Scully ${ }^{3}$, Georg Süssmann, and Herbert Walther ${ }^{1.2}$
${ }^{1}$ Scktion Physik, Universität Mūnchen, Am Coulombwall 1, D-8046 Garching. Germany
? Max-Planċk-Institut für Quantenoptik, Ludwig-Prandtl-Straße 10, W-8046 Garching.
${ }^{3}$ Department of Physics, Texas A \& M University, College Station, TX 77843-4242.
Z. Naturforsch. 47a, 1175-1186 (1992); received September 22, 1992

A study of interferometers with one-bit which-way detectors demonstrates that the trajectories. which David Bohm invented in his attempt at a realistic interpretation of quantum mechanics, are in fact surrealistic, because they may be macroscopically at variance with the observed track of the particle. We consider a two-slit interferometer and an incomplete Stern-Gerlach inierferometer, and propose an experimentum crucis based on the latter.

- Perform a which-way experiment with a double slit:

Trajectory Measurement

Surrealist Trajectories

- Which outcome will be observed?

Summary

- Deterministic extensions to QM are strongly constrained, but are nonetheless appealing
- Weak measurement can be used as a probe of quantum and, in the context of deterministic theories, sub-quantum features such as trajectories
- By combining these two paradigms, we can piece together a different perspective on many quantum behaviours

Extras

On the reality of the quantum state

Matthew F. Pusey ${ }^{1 \star}$, Jonathan Barrett ${ }^{2}$ and Terry Rudolph ${ }^{1}$

Quantum states are the key mathematical objects in quantum theory. It is therefore surprising that physicists have been unable to agree on what a quantum state truly represents. One possibility is that a pure quantum state corresponds directly to reality. However, there is a long history of suggestions that a quantum state (even a pure state) represents only knowledge or information about some aspect of reality. Here we show that any model in which a quantum state represents mere information about an underlying physical state of the system, and in which systems that are prepared independently have independent physical states, must make predictions that contradict those of quantum theory.

- No theory can have multiple underlying states of reality λ correspond to the same QM wavefunction ψ
- Therefore, λ uniquely determines ψ
- ψ is one of the "variables" of the model

No extension of quantum theory can have improved predictive power

Roger Colbeck ${ }^{1}$ \& Renato Renner ${ }^{2}$

We remark that several other attempts to extend quantum theory have been presented in the literature, the de Broglie-Bohm theory ${ }^{16,17}$ being a prominent example (this model recreates the quantum correlations in a deterministic way but uses non-local hidden variables, see ref. 18 for a summary). Our result implies that such theories necessarily come at the expense of violating assumption $F R$.
the negative: no extension of quantum theory can give more information about the outcomes of future measurements than quantum theory itself. Our result has significance for the foundations of quantum mechanics, as well as applications to tasks that exploit the inherent randomness in quantum theory, such as quantum cryptography.

Massachusetts Institute of Technology

Bohmian Mechanics

$$
\begin{gathered}
i \hbar \partial \psi / \partial t=-\left(\hbar^{2} / 2 m\right) \nabla^{2} \psi+V(\mathbf{x}) \psi . \\
\psi=R \exp (i S / \hbar) \quad P(\mathbf{x})=R^{2}(\mathbf{x}) \\
\frac{\partial P}{\partial t}+\nabla \cdot\left(P \frac{\nabla S}{m}\right)=0, \quad \partial P / \partial t+\nabla \cdot(P) \\
\frac{\partial S}{\partial t}+\frac{(\nabla S)^{2}}{2 m}+V(\mathbf{x})-\frac{\hbar^{2}}{4 m}\left[\frac{\nabla^{2} P}{P}-\frac{1}{2} \frac{(\nabla P)^{2}}{P^{2}}\right]=0 .
\end{gathered}
$$

Trajectory Plots

Trajectory Plots

Double-Double Slit Implementation

- To get complete trajectories, need about 18 h at realistic experimental parameters

