
Short-Time Bohmian Trajectories

Maurice A. de Gosson (joint work with B. Hiley)

NuHAG, Faculty of Mathematics, U. of Vienna

6. October 2013

M.A. de Gosson (Institute) short time 6. October 2013 1 / 20



Plan of the Talk

I begin by recalling the basics of Bohm�s theory of quantum motion
(aka �Bohmian mechanics�); an example of short-time trajectory is
given;

CAVEAT: Philosophical, ontological, etc. aspects are sidestepped.
The reality of Bohmian trajectories is not discussed, being irrelevant
in the present context;

I thereafter discuss a rigorous short-time approximation to the
two-point action function (�eikonal�);

I construct a short-time approximation to the propagator of
Schrödinger�s equation;

The latter is used to prove that short-time Bohmian trajectories
are classical Hamiltonian trajectories;
The possibility of using this result to prove a quantum Zeno e¤ect is
shortly discussed.
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Quantum motion

Consider a Hamiltonian function H = ∑n
j=1

p2j
2mj

+ V (x , t) and let Ψ be a
solution of the associated Schrödinger equation

i�h
∂Ψ
∂t
= bHΨ , bH = H(x ,�i�hrx ).

Writing Ψ = Re iS/�h, R > 0, and setting ρ = R2 insertion in that equation
yields a continuity equation and a Hamilton�Jacobi equation:

∂ρ

∂t
+ div(ρv) = 0

∂S
∂t
= H(x ,�i�hrxS) +QΨ.
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Quantum motion

In the continuity equation

∂ρ

∂t
+ div(ρv) = 0

the velocity �eld is given by

v = (
1
m1

∂S
∂x1

, ...,
1
mn

∂S
∂xn
)

and in the Hamilton�Jacobi equation the term QΨ = QΨ(x , t) (�quantum
potential�) is given by

QΨ = �
n

∑
j=1

�h2

2mj

1
R

∂2R
∂x2j

.

We de�ne: HΨ = H +QΨ. Notice that HΨ is generally time-dependent,
even if H isn�t.

M.A. de Gosson (Institute) short time 6. October 2013 5 / 20



Quantum motion

Following the theory of quantum motion (�Bohmian mechanics�) the
(system of) particle(s) is guided by the wavefunction Ψ and follows a
Hamiltonian trajectory: t 7�! (xΨ(t), pΨ(t)) where xΨ and pΨ are
solutions of the system

ẋΨ = rxHΨ(xΨ, pΨ, t)

ṗΨ = �rpHΨ(xΨ, pΨ, t)

with initial conditions

xΨ(0) = x0 , pΨ(0) = rxS(x , 0).

Equivalently:

ẋΨ
j =

�h
mj

Im
1
Ψ

∂Ψ
∂xj
.

Global existence and uniqueness for the Bohmian dynamics has been
proven by Berndl, et al. (1995).
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An elementary example

Choose for initial wavefunction a centered Gaussian

ψ0(x) =
1

(2πσ20)
1/4 exp

�
� x2

4σ20
+ ikx

�
and take H = p2/2m (the free motion Hamiltonian). Then

ψ(x , t) =
1

(2πA2t )1/4 exp
�
� (x � vg )

2

4σ0At
+ ik

�
x � vg t

2

��
where vg = �hk/m is the group velocity and At = σ0(1+ i�ht/2mσ20).
After a few calculations we get

xψ(t) = x0

�
1+

�h2t2

4m2σ40

�1/2

+ vg t;

for t ! 0 we thus have

xψ(t) = x0 + vg t| {z }
Classical motion

+O(t2).
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Quantum motion

Consider the case of a point source located at x0. We model it by
requiring that the wavefunction satis�es

i�h
∂Ψ
∂t
= H(x ,�i�hrx )Ψ

together with the initial condition

lim
t!0

Ψ(x , t) = δ(x � x0).

The function Ψ is thus here the quantum propagator G (x , x0, t) (Green
function) determined by the Hamiltonian: that is every solution of
Schrödinger�s equation with initial datum Ψ(x , 0) = Ψ0(x) can be written

Ψ(x , t) =
Z
G (x , x0, t)Ψ0(x0)dnx0.
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Generating function, action, eikonal

For the free particle (V = 0) in one dimension the propagator is

G (x , x0, t) =
� m
2πi�ht

�1/2
exp

�
i
�h
m
(x � x0)2

2t

�
.

The function

S(x , x0; t) = m
(x � x0)2

2t
is a generating function for the motion: the equations

p =
∂S
∂x
(x , x0; t) , p0 = �

∂S
∂x0
(x , x0; t)

are equivalent to the equations of motion

x = x0 +
p0
m
t , p = p0.

The function S(x , x0; t) is the action needed to go from x0 to x in time t
with velocity p0/m. It is called eikonal in geometric optics (= optical
path).
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Generating function, action, eikonal

In Quantum Physics (e.g. the theory of Feynman integral) one looks for
short-time approximations to the propagator; one �rst tries

G (x , x0, t) =
�

1
2πi�h

�n/2q
ρ(x , x0, t) exp

�
i
�h
S(x , x0; t)

�
where S(x , x0; t) is the generating function for the �ow determined by

H = ∑n
j=1

p2j
2mj

+ V (x , t) and

ρ(x , x0, t) = det
�
�S 00xx0(x , x0, t)

�
is the Van Vleck determinant (= density of trajectories).
But S(x , x0; t) is not easy to calculate explicitly, so one looks for
approximations.
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Surely you�re joking, Mr. Feynman!

The literature abounds with approximations for t ! 0 to the
generating function. Among the most popular, the �mid-point rules�

S(x , x0; t) �
n

∑
j=1
mj
(xj � x0,j )2

2t
� V ( 12 (x + x0))t

or

S(x , x0; t) �
n

∑
j=1
mj
(xj � x0,j )2

2t
� 1
2
(V (x) + V (x0))t.

(see any good text on the theory of Feynman integrals...).

Unfortunately: THEY ARE ALL INCORRECT, EVEN TO FIRST
ORDER!!!!!
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Example

Consider (for n = 1) the harmonic oscillator H = 1
2m (p

2 +m2ω2x2). The
exact formula for the action is

S =
mω

2 sinωt

�
(x2 + x20 ) cosωt � 2xx0

�
;

writing sinωt = ωt +O(∆t3), cosωt = 1+O(t2) we get

S = m
(x � x0)2

2t
� mω2

6
(x2 + xx0 + x20 )t +O(t

2)

while the mid-point rules above yield

S � m
(x � x0)2

2t
� 1
8
mω2(x + x0)2t

resp.

S � m
(x � x0)2

2t
� 1
2
mω2(x2 + x20 )t

(incompatible; they are not even consistent with each other...)
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The correct formula is...

...obtained by making the Ansatz

S(x , x0; t) =
n

∑
j=1
mj
(xj � x0,j )2

2t
+ S1(x , x0; t)t

This gives (Makri and Miller (1988�89), de Gosson (2000)):

S(x , x0; t) =
n

∑
j=1
mj
(xj � x0,j )2

2t
� eV (x , x0)t +O(t2)

where eV (x , x0) = Z 1

0
V (λx + (1� λ)x0, 0)dλ

is the average value of the potential (at time t = 0) along the line
segment joining x0 to x).
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Short-time propagator

The short-time propagator is given by

eG (x , x0; t) = � 1
2πi�h

�n/2qeρ(t) exp� i
�h
eS(x , x0; t)�

where eS(x , x0; t) = n

∑
j=1
mj
(xj � x0,j )2

2t
� eV (x , x0)t| {z }

Approximate action

and eρ is independent of x :
eρ(t) = m1 � � �mn

tn
.| {z }

Approximate Van Vleck density
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Short-time propagator

The main property of the short-time propagator is that if

Ψ(x , t) =
Z
G (x , x0; t)Ψ(x0)dnx0

is the solution of Schrödinger�s equation

i�h
∂Ψ
∂t
= bHΨ , Ψ(t = 0) = Ψ0

(G is the true propagator) then

eΨ(x , t) = Z eG (x , x0; t)Ψ0(x0)dnx0

satis�es
Ψ(x , t)� eΨ(x , t) = O �t2� . (1)
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Short-time Bohmian trajectories

Consider a sharply located particle: Ψ(x , 0) = Ψ0(x0) = δ(x � x0). We
have to specify its initial momentum: p(0) = p0 (arbitrary!). We have to
solve Bohm�s equation

ẋΨ
j =

�h
mj

Im
1
G

∂Ψ
∂xj

() ẋΨ = �h ImM�1rxG
G

where M = diag(m1, ...,mn). Replacing G with its approximation eG we
get

ẋΨ = �h ImM�1rx eGeG +O(t2).

Using formula

S(x , x0; t) =
n

∑
j=1
mj
(xj � x0,j )2

2t
� eV (x , x0))t +O(t2)

yields the following equation:
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ẋΨ(t) =
xΨ(t)� xΨ(0)

t
�M�1rx eV (xΨ(t), x0))t +O(t2).

This equation is singular at t = 0 hence the initial condition xΨ(0) = x0 is
not su¢ cient to determine its solution. However, the additional condition
p(0) = p0 allows us to single out a trajectory: we have

xΨ(t) = x0 + ẋΨ(0)t +O(t2) = x0 +M�1p0t +O(t2)

hence, inserting in the equation above, and using
rx eV (x0, x0) = 1

2rxV (x0, 0),

ẋΨ(t) =
xΨ(t)� xΨ(0)

t
� 1
2
M�1rxV (x0, 0)t +O(t2).

Di¤erentiating with respect to t gives

MẍΨ(t) = M
xΨ(t)� xΨ(0)

t2
+M

ẋΨ(t)
t

� 1
2
rxV (x0, 0) +O(t).
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Equivalently

ṗΨ(t) = MẍΨ(t) = �rxV (x0, 0) +O(t)

that is, integrating,

pΨ(t) = p0 �rxV (x0, 0)t +O(t2).

Summarizing, the phase space motion is described by the two equations

xΨ(t) = x0 +M�1p0t +O(t2)

pΨ(t) = p0 �rxV (x0, 0)t +O(t2).

These are the solutions, up to terms of order t2, of the classical Hamilton
equations:

ẋ = rpH(x , p, t) , ṗ = �rxH(x , p, t)

with initial values x(0) = x0 and p(0) = p0.
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Quantum Zeno

This result provides a rigorous treatment of the �watched pot�e¤ect: if we
keep observing a particle that, if unwatched would make a transition from
one quantum state to another, will now no longer make that transition.
The unwatched transition occurs when the quantum potential grows to
produce the transition. Continuously observing the particle does not allow
the quantum potential to develop so the transition does not take place.
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I give the last word to Pablo Echenique-Robba (arXiv:1308.5619
[quant-ph]):

�Shut up and let me think. Or why you should work on the
foundations of quantum mechanics as much as you please�

This is a good advice, and this is why we are all here!

THANK YOU FOR YOUR KIND ATTENTION!
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