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Prologue

“ Behind the apparent Lorentz invariance of the phenomena,
there is a deeper level which is not Lorentz invariant ... ”

- Interview in Davis and Brown’s

The Ghost in the Atom

John Bell 1986
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Path-integral appetizer

Feynman’s sum over histories

Let us have a particle (elementary excitation) at a spacetime point xµA

Probability P of finding it at another point xµB is given according to QM by

P(xA , xB ) = |〈xB |xA〉|
2

〈xB |xA〉 is computed as a sum over all possible histories connecting xA and
xB .

〈xB |xA〉 =
∑

PxA xB

exp(i/~ S[PxA xB
]) =

∫ xB

xA

Dx exp(i/~ S[x ])

PxA xB
is a particular history, S is the action.
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Kac’s sum over random walks

PI also relates quantum and stochastic processes.

This is due to formal analogy between Schrödinger and diffusion eq.

−~
i
∂ψ

∂t
= − ~2

2m
∆ψ = Ĥψ ↔ ∂P

∂t
= D ∆P

⇒ QM goes over to Brownian motion when

it 7→ t and ~2/2m 7→ D

So analytic continuation of QM PI gives PI where one sums over all possible
random walks (Wiener integral).

〈xB , tB |xA , tA〉 =

∫ x(tB )=x′

x(tA )=x
Dx exp

[
i
~

∫ tB

tA

dt
mẋ2

2

]
7→

P(xB , tB |xA , tA ) =

∫ x(tB )=x′

x(tA )=x
Dx exp

[
− 1

4D

∫ tB

tA

dtẋ2

]
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What is so Super about Superstatistics?

Superstatistics
Complex systems often exhibit a dynamics that can be regarded
as a superposition of several dynamics on different time scales.
... The two effects produce a superposition of two statistics, or
in a short, a “superstatistics”.∗

C. Beck

(1959 - ∗) ∗C. Beck et al., Physica A 322 (2003); C. Beck, Phys. Rev. Lett. 98 (2007)

Probability to find a brownian
particle to have velocity v is

p(v) =

∫
e−βmv2/2 f (β)dβ

Movement through different temperature zones.
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What is so Super about Superstatistics?

Superstatistics
Complex systems often exhibit a dynamics that can be regarded
as a superposition of several dynamics on different time scales.
... The two effects produce a superposition of two statistics, or
in a short, a “superstatistics”.∗

C. Beck

(1959 - ∗) ∗C. Beck et al., Physica A 322 (2003); C. Beck, Phys. Rev. Lett. 98 (2007)

Probability to find a brownian
particle to have velocity v is

p(v) =

∫
e−βmv2/2 f (β)dβ

Brownian particle in inhomogeneous fluid environment.
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Superstatistics and PI

Key property of PI in statistical physics is that conditional PDF’s fulfill

Chapman-Kolmogorov equation for continuous Markovian processes

P(xb, tb|xa, ta)=

∫ ∞
−∞

dx P(xb, tb|x , t)P(x , t |xa, ta)

S. Chapman A.N. Kolmogorov
(1888-1970) (1903-1987)

Conversely, any probability satisfying C-K-E possesses PI representation !!

One often encounters probabilities formulated as a superposition of PI

P̄(xb, tb|xa, ta) =

∫ ∞
0

dv ω(v , tba)

∫ x(tb)=xb

x(ta)=xa

DxDp e
∫ tb

ta
dτ(ipẋ−vH(p,x))

ω(v , tba) with (tba = tb − ta) cont. and norm. PDF on R+× R+.
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Superstatistics and PI

Q: Is it possible that also P̄(xb, tb|xa, ta) satisfies C-K-E?

A: Yes, if ω(v , t) fulfills a certain simple functional equation∗:

Define a rescaled weight function

w(v , t) ≡ ω(v/t , t)/t

Calculate its Laplace transform

w̃(pv , t) ≡
∫ ∞

0
dv e−pv v w(v , t)

P̄(xb, tb|xa, ta) satisfies C-K-E iff

w̃(pv , t1 + t2) = w̃(pv , t2)w̃(pv , t1)

∗P.J. and H. Kleinert, PRE 78 (2008) 031122, B. Simons, J. Funct. An. 91 (1990) 117
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Superstatistics and PI

Assuming continuity in t ,w(pv , t) is unique and can be written as:

w̃(pv , t) = [G(pv )]t = e−tF (pv )

F (pv ) satisfies the Lévy–Khintchine formula
⇒ w(v , t) is infinitely divisible distribution

Laplace inverse of w̃(pv , t) yields ω(v , t).

“Emergent” Hamiltonian ∗

Once above conditions are satisfied, then P̄(xb, tb|xa, ta) possesses a
path integral representation on its own. New Hamiltonian is given by

H(p, x) = F (H(p, x))

∗P.J. and H. Kleinert, PRE 78 (2008) 031122
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Some observations

Consider G(x) = e−a
√

x with a ∈ R+ this gives ω(v , a, t) =
a exp

(
−a2t/4v

)
2
√
π
√

v3/t

ω(v , t) is the Weibull distribution of order a. For W.D. of order 1 we have ∗

P(xb, tb|xa, ta) =

∫ x(tb)=xb

x(ta)=xa

Dx
Dp

(2π)D exp
{∫ tb

ta
dτ
[
ip · ẋ − c

√
p2 + m2c2

]}

=

∫ ∞
0

dv ω(v , tba)

∫ x(tb)=xb

x(ta)=xa

Dx
Dp

(2π)D exp
{∫ tb

ta
dτ [ip · ẋ − v(p2c2 + m2c4)]

}

Upper eq. is propagator for relativistic scalar particle, lower can be
considered as a superposition of non-relativistic free-particle PI

∗P.J. and H. Kleinert, PRE 78 (2008) 031122; PRD 82 (2010) 085016; arXiv:1007.3922
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Fluctuating mass

The relativistic PI can be rewritten in yet another way, namely

∫ x(t)=x′′

x(0)=x′
Dx

Dp
(2π)D exp

{∫ t

0
dτ
[
ip · ẋ − c

√
p2 + m2c2

]}

=

∫ ∞
0

dm̃ f 1
2

(
m̃, tc2, tc2m2

)∫ x(t)=x′′

x(0)=x′
Dx

Dp
(2π)D exp

{∫ t

0
dτ
[

ip · ẋ − p2

2m̃
−mc2

]}

where

fp(z, a, b) =
(a/b)p/2

2Kp(
√

ab)
zp−1 e−(az+b/z)/2

is the generalized inverse Gaussian distribution.
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Fluctuating mass

So m̃ plays role of Newtonian mass which takes on continuous values
distributed according to f 1

2

(
m̃, tc2, tc2m2) with 〈m̃〉 = m + 1/tc2.

Heuristic interpretation:

Single-particle relativistic th. can be viewed as a single-particle
non-relativistic th. whose Newtonian mass m̃ represents a fluctuation par.
approaching on average the Einsteinian rest mass m in the large t limit.

On more speculative vein ...

We can fit the above observation into currently much debated emergent
(special) relativity. ER views relativity as a theory that statistically emerges
from a deeper (essentially non-relativistic) level of dynamics.
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Emergent special relativity

In order to reconcile GR and QM a dramatic conceptual shift is required in
our understanding of a spacetime∗ ⇒

Revival of the idea of spacetime as a discrete coarse-grained structure
(typically at Planckian lengths `p ≈ 10−35m) ⇒

Quantum-gravity models:

space-time foam (Wheeler - 1955)

loop quantum gravity

causal dynamical triangulation

black-hole physics

cosmic cellular automata (Wolfram - 04)
space-time foam

∗ D. Bohm, 1954; G. ’t Hooft, J. Stat. Phys. 53 (1988) 323
P.J., H. Kleinert and F. Scardigli, PRD 81 (2010) 084030
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World crystal

Vision of the spacetime in loop quantum gravity.
M. Bojowald, PRL 86 (2001) 5227

Fluctuations of the Newtonian mass can be understood as originating
from particle’s evolution in “granular” medium — “spacetime”.
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World polycrystalline

Granularity typically leads to corrections in the local dispersion
relation and hence to modifications in local effective mass.

World-polycrystalline paradigm:

polycrystalline of copper polycrystalline of silicon
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World polycrystalline

Granularity typically leads to corrections in the local dispersion
relation and hence to modifications in local effective mass.

World-polycrystalline paradigm:

On the fast-time level a non-relativistic particle propagates
through grains with a different local m̃ in each grain.

On the long-time scale the probability of the distribution of m̃ in
various grains is f 1

2

(
m̃, tc2, tc2m2

)
.

Because the fast-time scale motion is brownian, local PDM
conditioned on some fixed m̃ in a given grain is Gaussian:

ρ̂(p, t |m̃) ∝ e−tp̂2
/2m̃
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World polycrystalline

Joint PDM is ρ̂(p, t ; m̃) = f 1
2

(
m̃, tc2, tc2m2) ρ̂(p, t |m̃)

marginal PDM describing the mass-averaged (i.e. long-time) behavior is

ρ̂(p, t) =

∫ ∞
0

dm̃ f 1
2

(
m̃, tc2, tc2m2

)
ρ̂(p, t |m̃)

Evolution in discrete spacetime:

Typical trajectory in Voronoi geometry Polycrystalline universe
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Important scales:

Some simple consequences:

〈m̃〉 = m + 1/tc2 and var(m̃) = m/tc2 + 2/t2c4

⇒ correlation time t ∼ 1/mc2 = tC

〈|v |〉|t=tC = (〈|p|〉/〈m̃〉)|t=tC = c.
On distances L� λC the average velocity is < c (as it should!).

Feynman–Hibbs scaling:

Define ∆x ≡ |〈x ′′, t ′′|x̂(τ + ∆t)− x̂(τ)|x ′, t ′〉|
with t ′ ≤ τ ≤ t ′′ then for
∆x � λC we have ∆x ∝ ∆t ⇒ dH = 1 while for
∆x � λC we have ∆x ∝

√
∆t ⇒ dH = 2.

Petr Jizba Cooperative Dynamical Processes



From QM to stochastic processes and back
Superstatistics paradigm

Applications to relativistic QM
Summary

Klein–Gordon particle
Emergent relativity
Gravity

Important scales:

Some simple consequences:

〈m̃〉 = m + 1/tc2 and var(m̃) = m/tc2 + 2/t2c4

⇒ correlation time t ∼ 1/mc2 = tC

〈|v |〉|t=tC = (〈|p|〉/〈m̃〉)|t=tC = c.
On distances L� λC the average velocity is < c (as it should!).

Feynman–Hibbs scaling:

Define ∆x ≡ |〈x ′′, t ′′|x̂(τ + ∆t)− x̂(τ)|x ′, t ′〉|
with t ′ ≤ τ ≤ t ′′ then for
∆x � λC we have ∆x ∝ ∆t ⇒ dH = 1 while for
∆x � λC we have ∆x ∝

√
∆t ⇒ dH = 2.

Petr Jizba Cooperative Dynamical Processes



From QM to stochastic processes and back
Superstatistics paradigm

Applications to relativistic QM
Summary

Klein–Gordon particle
Emergent relativity
Gravity

Important scales:

Some simple consequences:

〈m̃〉 = m + 1/tc2 and var(m̃) = m/tc2 + 2/t2c4

⇒ correlation time t ∼ 1/mc2 = tC

〈|v |〉|t=tC = (〈|p|〉/〈m̃〉)|t=tC = c.
On distances L� λC the average velocity is < c (as it should!).

Feynman–Hibbs scaling:

Define ∆x ≡ |〈x ′′, t ′′|x̂(τ + ∆t)− x̂(τ)|x ′, t ′〉|
with t ′ ≤ τ ≤ t ′′ then for
∆x � λC we have ∆x ∝ ∆t ⇒ dH = 1 while for
∆x � λC we have ∆x ∝

√
∆t ⇒ dH = 2.
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Important scales:

Some simple consequences:
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⇒ correlation time t ∼ 1/mc2 = tC

〈|v |〉|t=tC = (〈|p|〉/〈m̃〉)|t=tC = c.
On distances L� λC the average velocity is < c (as it should!).

Feynman–Hibbs scaling:

Define ∆x ≡ |〈x ′′, t ′′|x̂(τ + ∆t)− x̂(τ)|x ′, t ′〉|
with t ′ ≤ τ ≤ t ′′ then for
∆x � λC we have ∆x ∝ ∆t ⇒ dH = 1 while for
∆x � λC we have ∆x ∝

√
∆t ⇒ dH = 2.
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Path roughness

Roughness of representative trajectories in superstat. PI∗

Representative trajectory in the usual PI

∗P.J. and F. Scardigli, Int. J. Mod. Phys. B 26 (2012) 1241003; PRD 86 (2012) 025029
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Outline

1 From QM to stochastic processes and back
Path-integral appetizer

2 Superstatistics paradigm
Old wine in new bottles
Chapman–Kolmogorov eq. for Markov process

3 Applications to relativistic QM
Klein–Gordon particle
Emergent relativity
Gravity
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Gravity

When the spacetime is curved, a metric tensor enters in both PI’s in a
different way, yielding different “counterterms".

In Bastianelli–van Nieuwenhuizen’s time slicing regularization scheme

p2

2m̃
7→

g ijpipj

2m̃
+

~2

8m̃
(R + g ij Γm

il Γl
jm) ,

√
p2 + m2c2 7→

√
g ijpipj +

~2

4
(R + g ij Γm

il Γl
jm) + m2c2

+ ~4Φ(R, ∂R, ∂2R, ) + O(~6)

⇒ superstatistics PI identity breaks down !!

⇒ respective two cases will lead to different physics.
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Gravity

Einstein’s equivalence principle requires that the local spacetime
structure can be identified with the Minkowski spacetime possessing
local Lorentz symmetry
⇒ one might assume the validity of SPI’s at least locally.

The characteristic size of the local inertial frame is of order 1/|K |1/4

where K = RαβγδRαβγδ is the Kretschmann invariant.

⇒ breakdown of SPI’ happens when λC & 1/|K |1/4.∗

∗P.J. and F. Scardigli, EPJC 73 (2013) 2491
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Summary

Fusion of PI’s calculus with superstatistics allows to address
1 multi-scale stochastic processes
2 new classes of PI ⇒ applications in relativistic QM.

Wiener process on the fast-time scale is the most plane
stochastic process (no memory, directional democracy, etc.)

Inhomogeneous or polycrystalline vacuum turns the local Galileo
symmetry to emergent Lorentz symmetry.

Non-trivial implications for relativistic QM in curved spaces, e.g.,
charge-parity violation∗.

∗P.J. and F. Scardigli, EPJC 73 (2013) 2491
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Epilogue

“It would be so nice if something would make sense for a change”
- Alice, Through the Looking Glass (Lewis Carroll)
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Gravity

Examples:

• Schwarzschild geometry: K = 12 r2
s /r6

⇒ breakdown should be expected at radial distances r . (λ2
Crs)1/3

which are deeply buried below the Schwarzschild event horizon.

• Robertson–Walker geometry: K = 12 (ȧ4 + a2ä2)/(ac)4

⇒ breakdown should be expected at (ȧ4 + a2ä2) & (ac/λC)4

(a(t) is the RW scale factor)

In Vilenkin–Ford model for inflationary cosmology, a(t) = A
√

sinh(Bt)
with B = 2c

√
Λ/3 (Λ is the cosmological constant), we obtain

t .
1
B

arcsinh

[
BλC

(8c4 − (BλC)4)
1/4

]
≡ t̄
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Gravity

With Λ ' 10−52m−2 and τ -lepton Compton’s wavelength
λτC ' 6.7× 10−16m (yielding the tightest upper bound on t)

⇒ t̄ ' 4× 10−24s

NOTE: There is no unified theory of particles and antiparticles in the
non-relativistic physics — formally one has two separate theories.
The ensuing matter-antimatter asymmetry might be relevant in the
early Universe, e.g., for leptogenesis∗.

NOTE: t̄ is consistent with the nonthermal leptogenesis period:
10−26–10−12s after BB.

∗P.J. and F. Scardigli, PRD 86 (2012) 025029; arXiv:1301.4091 [hep-th], EPJC (2013)
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Path integral without action

There is close a connection with Feynman’s checkerboard PI

Feynman’s checkerboard path integral:

G =
∑

zig−zag paths

(
i

t
N

mc2

~

)R

=
∑

R

φ(N)(R)

(
i

t
N

mc2

~

)R

R.P. Feynman The dotted rectangle indicates
(1918-1988) the region of contributing paths R is number of reversals of zig-zag paths

G is the propagator for 1 + 1 dimensional Dirac’s equation

i~∂ψ
∂t

= mc2σxψ − ic~σz
∂ψ

∂x
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Discrete lattice and generalization to GR

Q: Is there a natural way to extend our picture to GR?

A: Yes, geometry of Einstein and Einstein-Cartan spaces can be considered
as being a manifestation of the defect structure of a crystal whose lattice
spacing is of the order of `p — “world crystal” ∗

Curvature is due to rotational def., torsion due to translational def.

∗H. Kleinert, 2010 textbook, (WS); G. Volovich et all, Ann. Phys. 216 (1992),
R. Jackiw et all, Ann. Phys. 308 (2003)
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Discrete lattice and GR

Burgers vector (dislocation) T 6= 0 R = 0
Frank vector (disclination) T = 0 R 6= 0

At long distances the memory of the crystalline structure is lost.

Discrete-spacetime probes:

Planck surveyor 14.02.2010 IceCube probe 2010/11
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Deformed special relativity — robustness

Different distributions of volumes of Voronoi cells in polycrystalline.
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Deformed special relativity — robustness

Understanding the robustness of the emergent SR under small variations in ω can guide the study of the relation
between SR and deformed SR. To this end we explore connection between δω and δF , i.e.

e−t[F (pv )+δF (pv )] =

∫ ∞
0

dv e−vpv [ω(v, t) + δω(v, t)]

Requiring that the new smearing PDF is again positively skewed with v ∈ R+, and seeking δv in the form

δv(v, t) = vα
∞∑

n=0

εn(t)vn
, α ≤ 1, εn(t)� 1

one arrives at δF (s) which admits Laurent expansion in powers of
√

s. If we truncate the expansion after ε1

H̄ = ε1/4 + (1 + ε0/2)

√
p2c2 + m2c4 + ε2/4

with ε1 = −2 (1 + ε0/2)
√
ε2. This is Magueijo–Smolin’s DSR.
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Troubles with Newton–Wigner PI

NOTE: “√ ” PI representation is known as the Newton-Wigner
propagator.

Problem:

True relativistic propagator must include also negative
energy spectrum, reflecting the existence of charge-
conjugated solutions — antiparticles. (Stückelberg, 1935)

Solution: Write equation for Klein-Gordon particle in Schrödinger-like
form — Feshbach-Villars representation

i∂t Ψ = HFV (p)Ψ and HFV (p) = (σ3 + iσ2)
p2

2m
+ σ3mc2

where Ψ is a two component object
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Feshbach–Villars representation

NOTE: The doubling of the fields implies the simultaneous description of particles and antiparticles.

Hamiltonian HFV (p) can be diagonalized as

HFV (p) = U(p)

(
c
√

p2 + m2c2 0
0 −c

√
p2 + m2c2

)
U(p)−1

≡ U(p)σ3U(p)−1H(p)

U is non-unitary hermitian matrix

U(p) =
(1 + γv ) + (1− γv )σ1

2
√
γv

Green’s function G(x, y) associated with the F-V Schrödinger equation is

(i∂t − HFV )G(x, t ; x′, t′) = iδ(D)(x − x′)δ(t − t′)
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Feshbach–Villars representation

The solution can be written as

G(x ; y) =
i

c2

∫
R4

dD+1p

(2π)D+1

e−ip(x−y)

p2 − m2c2 + iε

[
p0 c + (σ3 + iσ2)

p2

2m
+ σ3mc2

]

iε prescription ⇒ Feynman boundary condition

NOTE: Imaginary-time Green func. G(x,−it ; x′,−it′) ≡ P(x, t|x′, t′) is a solution of the Fokker–Planck like
equation

(∂t + HFV )P(x, t|x, t′) = δ(t − t′)δ(3)(x − x′)

where P(x, t|x′, t′) = 〈x|e−(t−t′)HFV |x′〉

or P(x, t|x′, t′) =

∫
RD

dp

(2π)D
eip·(x−x′′) U(p)〈x′′|e−(t−t′)σ3H |x′〉U(p)−1
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Feshbach–Villars representation

Warning:
We cannot write naively

〈x |e−(t−t ′)σ3Hp |x ′〉 =
∫ x(t)=x

x(t′)=x′
Dx Dp

(2π)D e
∫ t

t′ dτ
[
ip·ẋ−cσ3

√
p2+m2c2

]

it diverges for the lower components of the evolution operator

e−tσ3Hp =

(
e−tH 0

0 etH

)
This can be circumvented by forming superpositions of

integrals which differ for upper and lower components of
exp(−tσ3H(p))
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Feshbach–Villars representation

In particular

〈x |e−tσ3Ĥp |x ′〉 =

∫ ∞
0

dv ω(v , t)
∫ x(t)=x

x(0)=x′
Dx

Dp
(2π)D e

∫ t
0 dτ[ip·ẋ−v(p2c2+m2c4)]

The weight function is a matrix valued Weibull distribution:

ω(v , t) =
1

2
√
π
√

v3/|t |

(
θ(t)e−t/4v 0

0 θ(−t)et/4v

)

Related notes:

By going back to real times, we recover Green’s function
associated with the F-V Schrödinger equation.

Weibull’s PDF brought us automatically into a Polyakov gauge.

Dirac particle in Foldy–Wouthuysen rep. can be treated alike.∗

∗P.J. and H. Kleinert, arXiv:1007.3922
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Generalizations

More formal statement:
Stochastic process described by the Kramers–Moyal equation with the
relativistic Hamiltonian c

√
p2 + m2c2 is equivalent to a doubly stochastic

process in which the fast-time dynamics of a free non-relativistic particle
(Brownian motion) is coupled with the long-time dynamics describing
fluctuations of particle’s Newtonian mass.

NOTE: Above conclusions extend also to Dirac’s Hamiltonian

HA,V
D = cγ0γ · (p − eA/c) + γ0(mc2 + V ) + eA0

and to the Feshbach–Villars Hamiltonian

HA,V
FV = (σ3 + iσ2)

1
2m

(p − eA/c)2 + σ3(mc2 + V ) + eA0
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Generalizations

E.g., when V = 0, Ax = −By (Bz ≡ B) and Ay = Az = 0 then PI for
Dirac’s Hamiltonian yields corresponds to the “fast scale Hamiltonian”

HSP =
1

2m̃

[(
px +

e
c

By
)2

+ p2
y + p2

z

]
− µBBσ3

This is Schrödinger-Pauli Hamiltonian with µB = e~/2m̃c
representing Bohr magneton.

NOTE 1: Smearing distribution ω stays the same as for a
free-particle.

NOTE 2: Analogous reasonings can be performed also for charged
spin-0 particles, such as, e.g, π± mesons.
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What is so Super about Superstatistics?

Superstatistics
Complex systems often exhibit a dynamics that can be regarded
as a superposition of several dynamics on different time scales.
... The two effects produce a superposition of two statistics, or
in a short, a “superstatistics”.∗

C. Beck

(1959 - ∗) ∗C. Beck et al., Physica A 322 (2003); C. Beck, Phys. Rev. Lett. 98 (2007)

Temperature fluctuations in phase-space. Locally is system in equilibrium with temperature βi .

∗C. Beck and E.G.D. Cohen, Physica A 322 (2003) 267; C. Beck, Phys. Rev. Lett. 98 (2007) 064502Petr Jizba Cooperative Dynamical Processes


	From QM to stochastic processes and back
	Path-integral appetizer

	Superstatistics paradigm
	Old wine in new bottles
	Chapman–Kolmogorov eq. for Markov process

	Applications to relativistic QM 
	Klein–Gordon particle
	Emergent relativity
	Gravity

	Summary

