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QM is an approximation (very good one) of another theory,
namely, theory of classical random fields.

Soon or later we shall show experimentally that laws of
QM are approximative.

The basic law of QM is the Born’s rule. Its violation is
predicted by my model.
Khrennikov A.: Detection Model Based on Representation of Quantum

Particles by Classical Random Fields: Born’s Rule and Beyond. Found.
Physics 39, 997-1022 (2009).

Present experimental studies on violation of Born’s rule: Gregor Weihs
testing for three slit experiment. It is based on R. Sorkin’s work.
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G ‘t Hooft: subquantum theory will be very simple.
Zeilinger (private conversation): It will be so exotic that those guys

who nowadays struggle against QM will dream about those good days
of traditional QM.
My model is as simple as possible – just comeback to classical random

fields. May be too simple even for majority of those who question the
conventional interpretation of QM.
Where is quantumness in classical field theory? In detectors of the

threshold type! (see also A. Lande, W. Lamb).
Where is noncommutativity? In quadratic forms of classical fields.
Do fields have objective properties? Yes and no.
"Photon"interpreted as a classical pulse objectively has electric and

magnetic components of its field, but does a wave has position?
If one uses detectors of the threshold type, wave’s position depends

on the placement of detectors and thresholds used in them.
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Malus’s Law:
According to Malus, when completely plane polarized light is incident

on the analyzer, the intensity I of the light transmitted by the analyzer
is directly proportional to the square of the cosine of angle between the
transmission axes of the analyzer and the polarizer.

Born’s rule via discretization based on the threshold type detectors.
However, discretization is an approximation therefore "Malus law for
clicks” = Born’s rule only approximately accounts the numbers of clicks
in corresponding channels.



Dr
af

t
BigBlueL.png

5/23

JJ
II
J
I

Back

Close

Discrimination threshold
A lot of noise is involved in the process of detection.
An important source of noise is the multiplication process. For example,

in photo-multipliers, once an electron has been extracted from the metal,
it is accelerated in vacuum by an electric field until its kinetic energy
is enough to extract other bounds electrons (secondary emission) when
striking the surface of another metal surface (dynode), which will in turn
be used accelerated onto other dynodes to free more and more electrons,
until that flow of electrons becomes measurable as anodic current.
The form and energy of output spikes vary significantly from one

liberated energy carrier to another. Thus the gain is a random variable.
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Besides of noise produced by detectors, noise responsible for so called
dark counts plays an important role. This noise of the random background
is inescapable. In average spikes corresponding to signal detections
differ in the amplitude from noise generated spikes.
This fact provides a possibility to filter noise generated spikes by using

a discrimination threshold, denote the later by the symbol Ed.
The selection of this threshold is a delicate procedure. By selecting

too low Ed experimenter would count to many noise generated spikes,
in particular, dark counts. By selecting it too high experimenter would
discard too many spikes generated by the signal. In both cases quantum
statistics would be essentially disturbed.
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Threshold detection scheme
We consider a threshold type detector with the thresholdEd. It interacts

with a random field φ(s, ω), where s is time and ω is a chance
parameter describing randomness. For a moment, we consider the C-
valued random field (complex stochastic process).
The energy of the field is given by

E(s, ω) = |φ(s, ω)|2

(hence, the random field has the physical dimension ∼ √energy).

A threshold detector clicks at the first moment of time τ (ω) (the first
hitting time) when signal’s energy E multiplied by the gain g exceeds
the threshold:
(1)
gE(τ (ω), ω) ≥ Ed, i.e., τ (ω) = inf{s ≥ 0 : gE(s, ω) ≥ Ed}.
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PDF of the detection moment
We proceed under the following basic assumption. After arriving to a

threshold type detector a classical signal (random field) behaves inside
this detector as the (complex) Brownian motion, i.e., the φ(s, ω)

is simply the Wiener process, the Gaussian process having zero average
at any moment of time

(2) φ(s, ω) = 0.

and the covariance function

(3) φ(s1, ω)φ∗(s2, ω) = min(s1, s2)σ
2;

in particular, we can find average of its energy

(4) E(s, ω) = σ2s.

From this equation, we see that the coefficient σ2 has the physical
dimension of power.
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We are interested in the probability distribution of the moments of the
Ed-threshold detection for the energy of the Brownian motion. Since
moments of detection are defined formally as hitting times, we can apply
theory of hitting times. Consider
(5)
τa(ω) = inf{s ≥ 0 : E(s, ω) ≥ a2} = inf{s ≥ 0 : |φ(s, ω)| ≥ a}.

Its probability distribution function (PDF) is given by the complicated
expression, see, e.g., Shyryaev

(6) P (τa ≤ ∆t) = 4
∞∑
k=0

(−1)k
[
1− Φ

(a(1 + 2k)
√
σ2∆t

)]
,

where
Φ(x) =

1
√

2π

∫ x

−∞
e−u

2/2du

is the PDF of the standard Gaussian distribution.
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The complementary error function:

erfc(x) = 1− erf(x) =
2
√
π

∫ ∞
x

e−u2
du.

Now we select a =
√

Ed
g

and set τ ≡ τa. We obtain:

(7) P (τ (ω) ≤ ∆t) = 2
∞∑
k=0

(−1)kerfc
(
(1 + 2k)

√
Ed

2σ2∆tg

)
.
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Asymptotics for the detection moment
In coming considerations, ∆t is the average duration of the

interaction of a signal with a threshold detector. The experimental
scheme can be described in the following way. There is a source of
random pulses of e.g. classical electromagnetic field. (Such pulses can be
identified with wave packets used in the quantum formalism.) Each pulse
propagates in space and finally arrives to a detector. The aforementioned
temporal parameter ∆t is the (average) duration of interaction of an
input pulse with a detector. The quantity

(8) Epulse = σ2∆t

is the average energy of emitted pulses.
In fact, this is the average energy which is transmitted to a detector by

a pulse in the process of interaction. We proceed under the assumption
that there are no losses and a detector “eats” (in average) the total
energy of the emitted pulse.
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We shall proceed under the basic assumption that this energy is essentially
less than the threshold, i.e.,

(9) ε ≡
Epulse

Ed
<< 1.

This is a realistic assumption, since the discrimination threshold is set
for the amplified signals from the detector and the gain producing this
amplification is very large. In reality ε ∼ 10−7.

Additional randomization by using a random gain
As was pointed out, the gain is by itself a random variable:

τ (ω) = inf{s ≥ 0 : g(ω)E(s, ω) ≥ Ed}.
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Born’s rule for the detection probability
Consider now a random signal φ(s, ω) valued in the m-dimensional

complex HIlbert spaceH, wherem can be equal to infinity. Let (ej) be
an orthonormal basis inH. The vector-valued (classical) signal φ(s, ω)

can be expanded with respect to this basis, "Malus law":

(10) φ(s, ω) =
∑
j

φj(s, ω)ej, φj(s, ω) = 〈ej, φ(s, ω)〉.

This mathematical operation is physically realized as splitting of the
signal φ(s, ω) into components φj(s, ω). These components can be
processed through mutually disjoint channels, j = 1, 2, ...m. We now
assume that there is a threshold detector in each channel,D1, ..., Dm.

We also assume that all detectors have the same threshold Ed > 0 and
the same probability distribution of the gain, with the density ρg(λ).
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Suppose now that φ(s, ω) is the H-valued Brownian motion (the
Wiener process in H). This process is determined by the covariance
operator B : H → H. Any covariance operator is Hermitian,
positive, and the trace-class and vice versa. The complex Wiener
process is characterized by the Hermitian covariance operator. (We
remark that complex-valued random signals are widely used in e.g. radio-
physics.) We have, for y ∈ H,

〈y, φ(s, ω)〉 = 0,

and, for yj ∈ H, j = 1, 2,

〈y1, φ(s1, ω)〉〈φ(s2, ω), y2〉 = min(s1, s2)〈By1, y2〉.

The latter is the covariance function of the stochastic process; in the
operator form: B(s1, s2) = min(s1, s2)B.
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We note that the dispersion of the H-valued Wiener process (at the
instant of time s) is given by

(11) Σ2
s ≡ ‖φ(s, ω)‖2 = sTrB.

This is the average energy of this random signal at the instant of time
s. Hence, the quantity

(12) Σ2 =
Σ2
s

s
= TrB

has the physical dimension of power; this is the average power of the
signal of the Brownian motion type (it does not depend on time).
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We also remark that by normalization of the covariance function for
the fixed s by the dispersion we obtain the operator,

(13) ρ = B/TrB,

which formally has all properties of the density operator used in
quantum theory to represent quantum states. Its matrix elements have
the form

(14) ρij = bij/Σ
2.

These are dimensionless quantities. The relation (13) plays a fundamental
role in our approach : each classical random process generates
a quantum state (in general mixed) which is given by the
normalized covariance operator of the process.
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‘t Hooft: can quantum and classical models be mapped
one to another?

Can theory of classical random fields be represented in
terms of quantum theory?

The answer is yes! Covariance operators under the natural normalization
give us "density operators quadratic forms of random fields are mapped
onto "quantum observables"given by Hermitian operators representing
these forms.
Khrennikov A.: Entanglement’s dynamics from classical stochastic process.

Europhysics Letters 88, 40005.1-6 (2009)
Khrennikov A.: Quantum correlations from classical Gaussian correlations.

J. Russian Laser Research 30, 472-479 (2009)
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We now consider components of the random signal φ(s, ω) and their
correlations:
(15)
φi(s1, ω)φ∗i (s2, ω) = min(s1, s2)〈Bei, ej〉 = min(s1, s2)bij.

In particular,

(16) σ2
j(s) ≡ Ej(s, ω) ≡ |φj(s, ω)|2 = s bjj.

This is the average energy of the jth component at the instant of time
s. We also consider its average power:

(17) σ2
j = bjj.

We remark that the average power of the total random signal is equal
to the sum of powers of its components:

(18) Σ2 =
∑
j

σ2
j .
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We have

Nj =
T

∆t

∫
dλρg(λ)P (τj ≤ ∆t|g = λ)

(19) =
2T

∆t

∞∑
k=0

(−1)k
∫
dλρg(λ)erfc

(
(1 + 2k)

√
Ed

2λσ2
j ∆t

)
.

The total number of clicks in all detectors is the sum of Nj :

(20)

N =
2T

∆t

∞∑
k=0

(−1)k
∫
dλρg(λ)

∑
j

erfc
(
(1 + 2k)

√
Ed

2λσ2
j ∆t

)
.
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Hence, the probability of a click in the jth detector is given by sufficiently
complex formula (generalized Born’s rule):
(21)

Pj =

∑∞
k=0(−1)k

∫
dλρg(λ)erfc

(
(1 + 2k)

√
Ed

2λσ2
j ∆t

)
∑∞

k=0(−1)k
∫
dλρg(λ)

∑
j erfc

(
(1 + 2k)

√
Ed

2λσ2
j ∆t

).

(22) Pj =

∑∞
k=0(−1)k

∫
dλρg(λ)erfc

(
(1 + 2k)

√
1

2λε

)
∑∞

k=0(−1)k
∫
dλρg(λ)

∑
j erfc

(
(1 + 2k)

√
1

2λε

).
We now recall that want to find the asymptotics for

(23) ε ≡
Epulse

Ed
<< 1.
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(24) lim
ε→0

Pj(ε) =
σ2
j

Σ2
= ρjj = TrρĈj,

where the projection operator Ĉj = |ej〉〈ej| on the vector ej :

A. Khrennikov, Violation of Bell’s inequality by correlations of classical
random signals. Physica Scripta, T151, art. number 014003 (2012)
A. Khrennikov, Quantum probabilities and violation of CHSH-inequality

from classical random signals and threshold type detection scheme.
Prog. Theor. Phys. 128, No. 1, 31-58 (2012).
arxiv.org/abs/1111.1907
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Next Växjö-conference on quantum foundations, June 9-12, 2014,
"Quantum Theory: problems and advances
webpage: lnu.se/qtpa


