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Weak ValuesVOLUME 60, NUMBER 14 PHYSICAL REVIEW LETTERS 4 APRIL 1988

How the Result of a Measurement of a Component of the Spin of a

Spin- 2 Particle Can Turn Out to be 100

Yakir Aharonov, David Z. Albert, and Lev Vaidman

Physics Department, University of South Carolina, Columbia, South Carolina 29208, and

School of Physics and AstronomyT, el Av-iv UniversityR, amat Aviv 69978, Israel
(Received 30 June 1987)

We have found that the usual measuring procedure for preselected and postselected ensembles of

quantum systems gives unusual results. Under some natural conditions of weakness of the measurement,

its result consistently defines a new kind of value for a quantum variable, which we call the weak value.

A description of the measurement of the weak value of a component of a spin for an ensemble of

preselected and postselected spin- 2 particles is presented.

PACS numbers: 03.65.Bz

This paper will describe an experiment which mea-

sures a spin component of a spin- —,
'
particle and yields a

result which is far from the range of "allowed" values.

We shall start with a brief description of the standard

measuring procedure. Considering measurements on an

ensemble of preselected and postselected systems, we

shall define a new concept: a weak value of a quantum
variable. And, finally, we shall describe the measure-

ment of the weak value on the example of a spin- —,
'
par-

ticle.

In quantum theory, the result of a measurement of a

variable A which has discrete eigenvalues a; must neces-

sarily be one of those values. The Hamiltonian of the

standard measurement procedure ' is
H =—g(t)qA,

where g(t) is a normalized function with a compact sup-

port near the time of measurement, and q is a canonical

variable of the measuring device with a conjugate

momentum tr. The initial state of the measuring device

in the ideal case has to be such that tr is well defined.

After the interaction (I) we can ascertain the value of A

from the final value of tr: A Btr.

As a reasonable approximation for a real situation, we

may take the initial state of the measuring device as a

Gaussian in the q (and consequently also in the tr) repre-

sentation. For this case, the Harniltonian (1) leads to

the transformation

tIH dte a2I4(—tea) 'g—
—(~—a;)'/4(4a)'iA

) (2)

where g; a; i A =a;) is the initial state of our system. If
the spread of the tt distribution hatt is much smaller than

the differences between the a;, then, after the interaction,
we shall be left with the mixture of Gaussians located

around a; correlated with different eigenstates of A. A
measurement of tt will then indicate the value of A.
In the opposite limit, where htr is much bigger than all

a;, the final probability distribution will be again close to

a Gaussian with the spread hatt. The center of the Gauss-

ian will be at the mean value of A: (A) =g; i a; i a;.
One measurement like this will give no information be-

cause htr»(A); but we can make this same measure-

ment on each member of an ensemble of W particles

prepared in the same state, and that will reduce the

relevant uncertainty by the factor I/JN, while the mean

value of the average will remain (A). By enlarging the

number X of particles in the ensemble, we can make the

measurement of (A) with any desired precision.

The outcome of the measurement is the average of the

obtained values tr of the measuring devices. As we ex-

plained earlier, it will yield, for a sufficiently large en-

semble, the value (A). We now raise the question: Can

we change the above outcome by taking into account the

values of tr of only a part of the original ensemble, per-

forming a particular postselection'? We may, of course,

achieve this rather trivially, by selecting only measuring

devices with large values of tt which we can always find,

since the original distribution of tt has nonvanishing tails.

But suppose we allow only postselection performed on

the particles themselves; how then can we maximize the

outcome for the average of tr? It might appear at first

that the best method for this will be to select all particles

for which the final state corresponds to the eigenvalue

a,„. But this is not the case. Surprisingly, we found

that by making other postselections we can obtain much

bigger outcomes.

Indeed, we shall now show that the above measure-

ments (with large t),tr), when applied to preselected and

postselected ensembles, may yield new values which lie

outside the "allowed" range, i.e., outside the interval

[min(a;), max(a;)]. The procedure of the measurement

is as follows. We start with a large ensemble of particles
prepared in the same initial state. Every particle in-

teracts with a separate measuring device, and then the

measurement which selects the final state is performed.

Finally, we take into account only the "readings" of the

1988 The American Physical Society 1351

PRL 60, 1351 (1988).
Consider an arbitrary
system observable A.
Assume a probe with
[q̂, p̂] = i , initially in a
MUS (minimum
uncertainty state).

The probe state is defined by σin
p , p̄in, and q̄in = 0.

Assume (von Neumann) Ĥ = δ(t)Â⊗ q̂, so that p̂f − p̂in = Â.
By measuring pf we can estimate A as A(pf) = pf − p̄in.
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Weak Values

Initial and Final States.
For initial system state |ψin〉, we can obtain, by repeating the
experiment,

E[A(pf)|ψin] = 〈ψin|Â|ψin〉.

Now consider a final strong measurement on the system too.

Consider the sub-ensemble where the final result corresponds to
projecting onto state |φf〉.

Then we can consider the post-selected average E[A(pf)|ψin, φf].
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Weak Values

The Weak Measurement Limit
In the weak measurement limit, σp →∞,

E[A(pf)|ψin, φf]→ φf〈Aw〉ψin ≡ Re
〈φf|Â|ψin〉
〈φf|ψin〉

.

Q Why is this the weak measurement limit?

A Because very little information in any individual result

A(p̂f) = Â + (p̂in − p̄in)

and
〈
(p̂in − p̄in)2

〉
= σ2

p →∞.

A Because weak (not no) disturbance:

ŝf = ŝin − i[ŝin, Â]⊗ q̂in

and
〈
(q̂in)2

〉
= 1/(2σp)2 → 0 in this limit.

Note: the weaker the measurement, the larger the number of
repetitions required to obtain a reliable average.
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Weak Values

What (in my humble opinion) do Weak Values offer for
“Fundamental Questions in Quantum Mechanics”?

Many FQiQM have no (or at least no unique) answers in standard QM,
but in many cases, Weak Values do offer answers, which

may be a new answer to the question,
or single out one answer out of a (possibly infinite) set of answers
that had been proposed,
either of which may give new insights and prompt new research,
and if not, at least they often enable an experiment to be done,
which brings the issues to the attention of a broader audience
(in a way that theory papers seldom do).

e.g. Superluminal tunnelling, measurement–disturbance relations,
three box paradox, Cherenkov radiation in vacuum, Pre-jump
oscillations in cavity QED, . . .
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Measuring Bohmian-like trajectories

A unique Bohmian velocity

Consider a Bohmian world-configuration with equation of motion

ẋ = vψ(t)(x)

There are infinitely many functional expressions for v•(•) :

∂Pψ(t)(x)/∂t +∇ · [Pψ(t)(x; t)vψ(t)(x)] = 0,

with Pψ(t)(x) = 〈ψ(t)|x〉〈x|ψ(t)〉.

But if we define (HMW, NJP, 2007)

vψ(t)(x) = lim
τ→0

τ−1 Eψ(t)[xstrong(t + τ)− xweak(t)|xstrong(t + τ) = x]

= lim
τ→0

τ−1
[
x− 〈x|Û(τ)〈x̂

w〉|ψ(t)〉

]
.

one gets the standard Bohmian expression for vψ(t)(x) ...
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Measuring Bohmian-like trajectories

Experiment! Kocsis & al. & Steinberg (Science, 2011)

... and one can measure it (even as a “naive experimentalist”)

sarily gives up the option of observing the other
(1–6). However, it is possible to “weakly” mea-
sure a system, gaining some information about
one property without appreciably disturbing the
future evolution (7); although the information ob-
tained from any individual measurement is lim-
ited, averaging over many trials determines an
accurate mean value for the observable of interest,
even for subensembles defined by some subse-

quent selection (perhaps even on a complementary
observable). It was recently pointed out (8) that
this provides a natural way to operationally de-
fine a set of particle trajectories: One can ascer-
tain the mean momentum of the subensemble of
particles that arrive at any given position, and, by
thus determining the momentum at many posi-
tions in a series of planes, one can experimentally
reconstruct a set of average trajectories. We use
a modified version of this protocol to reconstruct
the “weak-valued trajectories” followed by single
photons as they undergo two-slit interference. In
the case of single-particle quantum mechanics,
the trajectories measured in this fashion repro-
duce those predicted in the Bohm–de Broglie
interpretation of quantum mechanics (9, 10).

Weak measurements, first proposed 2 decades
ago (7, 11), have recently attracted widespread
attention as a powerful tool for investigating fun-
damental questions in quantum mechanics (12–15)
and have generated excitement for their potential
applications to enhancing precision measurement
(16, 17). In a typical von Neumann measure-
ment, an observable of a system is coupled to a
measurement apparatus or “pointer” via its mo-
mentum. This coupling leads to an average shift
in the pointer position that is proportional to the
expectation value of the system observable. In a
“strong” measurement, this shift is large relative
to the initial uncertainty in pointer position, so
that significant information is acquired in a single
shot. However, this implies that the pointer mo-
mentum must be very uncertain, and it is this
uncertainty that creates the uncontrollable, irrevers-
ible disturbance associated with measurement.
In a “weak” measurement, the pointer shift is
small and little information can be gained on a
single shot; but, on the other hand, there may be
arbitrarily little disturbance imparted to the sys-
tem. It is possible to subsequently postselect the
system on a desired final state. Postselecting on

a final state allows a particular subensemble to
be studied, and the mean value obtained from
repeating the weak measurement many times is
known as the weak value. Unlike the results of
strong measurements, weak values are not con-
strained to lie within the eigenvalue spectrum of
the observable being measured (7). This has led
to controversy over the meaning and role of weak
values, but continuing research has made strides
in clarifying their interpretation and demonstrat-
ing a variety of situations in which they are clearly
useful (16–21).

In our experiment, we sent an ensemble of
single photons through a two-slit interferometer
and performed a weak measurement on each pho-
ton to gain a small amount of information about
its momentum, followed by a strong measure-
ment that postselects the subensemble of pho-
tons arriving at a particular position [see (22) for
more details]. We used the polarization degree
of freedom of the photons as a pointer that
weakly couples to and measures the momentum
of the photons. This weak momentum measure-
ment does not appreciably disturb the system,
and interference is still observed. The two mea-
surements must be repeated on a large ensemble
of particles in order to extract a useful amount
of information about the system. From this set
of measurements, we can determine the average
momentum of the photons reaching any partic-
ular position in the image plane, and, by repeat-
ing this procedure in a series of planes, we can
reconstruct trajectories over that range. In this
sense, weak measurement finally allows us to
speak about what happens to an ensemble of
particles inside an interferometer.

Our quantum particles are single photons
emitted by a liquid helium-cooled InGaAs quan-
tum dot (23, 24) embedded in a GaAs/AlAs mi-
cropillar cavity. The dot is optically pumped by a
CW laser at 810 nm and emits single photons at
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Fig. 2. Measured intensities (photon counts) of
the two circular polarization components of |y〉,
measured on the CCD screen (red and blue curves),
as well as the weak momentum values calculated
from these intensities (black) for imaging planes at
(A) z = 3.2 m, (B) z = 4.5 m, (C) z = 5.6 m, and (D)
z = 7.7 m. The red and blue data points are the
intensity data with constant background sub-
tracted. The errors for the momentum values were
calculated by simulating the effect of Poissonian
noise in the photon counts. The magenta curve
shows momentum values obtained from enforcing
probability density conservation between adjacent
z planes. Because of the coarse-grained averag-
ing over three imaging planes, the probability-
conserving momentum values are not as sensitive
as the measured weak momentum values to high-
ly localized regions in the pattern with steep mo-
mentum gradients.

Fig. 3. The reconstructed
average trajectories of an
ensemble of single photons
in the double-slit appara-
tus. The trajectories are re-
constructed over the range
2.75 T 0.05 to 8.2 T 0.1 m
byusing themomentumdata
(black points in Fig. 2) from
41 imaging planes. Here,
80 trajectories are shown.
To reconstruct a set of tra-
jectories, we determined the
weak momentum values for
the transverse x positions at
the initial plane. On the basis
of this initial position and
momentum information, the
x position on the subsequent
imaging plane that each
trajectory lands is calculated, and the measured weak momentum value kx at this point found. This
process is repeated until the final imaging plane is reached and the trajectories are traced out. If a
trajectory lands on a point that is not the center of a pixel, then a cubic spline interpolation between
neighboring momentum values is used.
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Note that it is not
possible to follow an
individual particle.

These trajectories
are created by
patching together
little increments
inferred from the
weak velocities.
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Measuring Bohmian-like trajectories

A unique Bohmian ontology?

The weak-valued velocity formula evaluates in general to

vψ(t)(x) = Re
〈ψ(t)|x〉〈x|i[Ĥ, x̂]|ψ(t)〉

~〈ψ(t)|x〉〈x|ψ(t)〉
.

Q Is this always consistent with QM? i.e. Does

P0(x) = 〈ψ(0)|x〉〈x|ψ(0)〉 → Pt (x) = 〈ψ(t)|x〉〈x|ψ(t)〉?

A Iff Ĥ is at most quadratic in operators canonically conjugate to x̂.
Q Isn’t this a limitation of this approach?
A No! Because all physical Hamiltonians are so constrained if we

take x̂ to be the configuration operator (as usual).
That is, this approach explains why HV = x.

Q Does this prove that Bohmian mechanics is correct?
A Absolutely not. But it shows that it is self-substantiating, making it

(I think) a very natural theory.
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~〈ψ(t)|x〉〈x|ψ(t)〉
.

Q Is this always consistent with QM? i.e. Does

P0(x) = 〈ψ(0)|x〉〈x|ψ(0)〉 → Pt (x) = 〈ψ(t)|x〉〈x|ψ(t)〉?
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Many Interacting Worlds

Repulsive trajectories?

sarily gives up the option of observing the other
(1–6). However, it is possible to “weakly” mea-
sure a system, gaining some information about
one property without appreciably disturbing the
future evolution (7); although the information ob-
tained from any individual measurement is lim-
ited, averaging over many trials determines an
accurate mean value for the observable of interest,
even for subensembles defined by some subse-

quent selection (perhaps even on a complementary
observable). It was recently pointed out (8) that
this provides a natural way to operationally de-
fine a set of particle trajectories: One can ascer-
tain the mean momentum of the subensemble of
particles that arrive at any given position, and, by
thus determining the momentum at many posi-
tions in a series of planes, one can experimentally
reconstruct a set of average trajectories. We use
a modified version of this protocol to reconstruct
the “weak-valued trajectories” followed by single
photons as they undergo two-slit interference. In
the case of single-particle quantum mechanics,
the trajectories measured in this fashion repro-
duce those predicted in the Bohm–de Broglie
interpretation of quantum mechanics (9, 10).

Weak measurements, first proposed 2 decades
ago (7, 11), have recently attracted widespread
attention as a powerful tool for investigating fun-
damental questions in quantum mechanics (12–15)
and have generated excitement for their potential
applications to enhancing precision measurement
(16, 17). In a typical von Neumann measure-
ment, an observable of a system is coupled to a
measurement apparatus or “pointer” via its mo-
mentum. This coupling leads to an average shift
in the pointer position that is proportional to the
expectation value of the system observable. In a
“strong” measurement, this shift is large relative
to the initial uncertainty in pointer position, so
that significant information is acquired in a single
shot. However, this implies that the pointer mo-
mentum must be very uncertain, and it is this
uncertainty that creates the uncontrollable, irrevers-
ible disturbance associated with measurement.
In a “weak” measurement, the pointer shift is
small and little information can be gained on a
single shot; but, on the other hand, there may be
arbitrarily little disturbance imparted to the sys-
tem. It is possible to subsequently postselect the
system on a desired final state. Postselecting on

a final state allows a particular subensemble to
be studied, and the mean value obtained from
repeating the weak measurement many times is
known as the weak value. Unlike the results of
strong measurements, weak values are not con-
strained to lie within the eigenvalue spectrum of
the observable being measured (7). This has led
to controversy over the meaning and role of weak
values, but continuing research has made strides
in clarifying their interpretation and demonstrat-
ing a variety of situations in which they are clearly
useful (16–21).

In our experiment, we sent an ensemble of
single photons through a two-slit interferometer
and performed a weak measurement on each pho-
ton to gain a small amount of information about
its momentum, followed by a strong measure-
ment that postselects the subensemble of pho-
tons arriving at a particular position [see (22) for
more details]. We used the polarization degree
of freedom of the photons as a pointer that
weakly couples to and measures the momentum
of the photons. This weak momentum measure-
ment does not appreciably disturb the system,
and interference is still observed. The two mea-
surements must be repeated on a large ensemble
of particles in order to extract a useful amount
of information about the system. From this set
of measurements, we can determine the average
momentum of the photons reaching any partic-
ular position in the image plane, and, by repeat-
ing this procedure in a series of planes, we can
reconstruct trajectories over that range. In this
sense, weak measurement finally allows us to
speak about what happens to an ensemble of
particles inside an interferometer.

Our quantum particles are single photons
emitted by a liquid helium-cooled InGaAs quan-
tum dot (23, 24) embedded in a GaAs/AlAs mi-
cropillar cavity. The dot is optically pumped by a
CW laser at 810 nm and emits single photons at
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Fig. 2. Measured intensities (photon counts) of
the two circular polarization components of |y〉,
measured on the CCD screen (red and blue curves),
as well as the weak momentum values calculated
from these intensities (black) for imaging planes at
(A) z = 3.2 m, (B) z = 4.5 m, (C) z = 5.6 m, and (D)
z = 7.7 m. The red and blue data points are the
intensity data with constant background sub-
tracted. The errors for the momentum values were
calculated by simulating the effect of Poissonian
noise in the photon counts. The magenta curve
shows momentum values obtained from enforcing
probability density conservation between adjacent
z planes. Because of the coarse-grained averag-
ing over three imaging planes, the probability-
conserving momentum values are not as sensitive
as the measured weak momentum values to high-
ly localized regions in the pattern with steep mo-
mentum gradients.

Fig. 3. The reconstructed
average trajectories of an
ensemble of single photons
in the double-slit appara-
tus. The trajectories are re-
constructed over the range
2.75 T 0.05 to 8.2 T 0.1 m
byusing themomentumdata
(black points in Fig. 2) from
41 imaging planes. Here,
80 trajectories are shown.
To reconstruct a set of tra-
jectories, we determined the
weak momentum values for
the transverse x positions at
the initial plane. On the basis
of this initial position and
momentum information, the
x position on the subsequent
imaging plane that each
trajectory lands is calculated, and the measured weak momentum value kx at this point found. This
process is repeated until the final imaging plane is reached and the trajectories are traced out. If a
trajectory lands on a point that is not the center of a pixel, then a cubic spline interpolation between
neighboring momentum values is used.
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Suggestive of trajectories for a bunch
of particles which repel one another.
This is not to be taken literally.
But why not?
Schiff & Poirier, J. Chem. Phys. (2012)
“Quantum Mechanics without
Wavefunctions” developed this theory
for a continuous ensemble of particles.
Shortly after (and in ignorance of) this,
we had a very similar idea.
But we think it is difficult to imagine
what a continuous ensemble means,
so we are trying to develop the theory
for a finite (but very large) ensembles.

Wiseman, Deckert & Hall (Griffith University) Weak Values→Bohm→Many Worlds EmQM, Vienna, 2013 13 / 30



Many Interacting Worlds

Repulsive trajectories?

sarily gives up the option of observing the other
(1–6). However, it is possible to “weakly” mea-
sure a system, gaining some information about
one property without appreciably disturbing the
future evolution (7); although the information ob-
tained from any individual measurement is lim-
ited, averaging over many trials determines an
accurate mean value for the observable of interest,
even for subensembles defined by some subse-

quent selection (perhaps even on a complementary
observable). It was recently pointed out (8) that
this provides a natural way to operationally de-
fine a set of particle trajectories: One can ascer-
tain the mean momentum of the subensemble of
particles that arrive at any given position, and, by
thus determining the momentum at many posi-
tions in a series of planes, one can experimentally
reconstruct a set of average trajectories. We use
a modified version of this protocol to reconstruct
the “weak-valued trajectories” followed by single
photons as they undergo two-slit interference. In
the case of single-particle quantum mechanics,
the trajectories measured in this fashion repro-
duce those predicted in the Bohm–de Broglie
interpretation of quantum mechanics (9, 10).

Weak measurements, first proposed 2 decades
ago (7, 11), have recently attracted widespread
attention as a powerful tool for investigating fun-
damental questions in quantum mechanics (12–15)
and have generated excitement for their potential
applications to enhancing precision measurement
(16, 17). In a typical von Neumann measure-
ment, an observable of a system is coupled to a
measurement apparatus or “pointer” via its mo-
mentum. This coupling leads to an average shift
in the pointer position that is proportional to the
expectation value of the system observable. In a
“strong” measurement, this shift is large relative
to the initial uncertainty in pointer position, so
that significant information is acquired in a single
shot. However, this implies that the pointer mo-
mentum must be very uncertain, and it is this
uncertainty that creates the uncontrollable, irrevers-
ible disturbance associated with measurement.
In a “weak” measurement, the pointer shift is
small and little information can be gained on a
single shot; but, on the other hand, there may be
arbitrarily little disturbance imparted to the sys-
tem. It is possible to subsequently postselect the
system on a desired final state. Postselecting on

a final state allows a particular subensemble to
be studied, and the mean value obtained from
repeating the weak measurement many times is
known as the weak value. Unlike the results of
strong measurements, weak values are not con-
strained to lie within the eigenvalue spectrum of
the observable being measured (7). This has led
to controversy over the meaning and role of weak
values, but continuing research has made strides
in clarifying their interpretation and demonstrat-
ing a variety of situations in which they are clearly
useful (16–21).

In our experiment, we sent an ensemble of
single photons through a two-slit interferometer
and performed a weak measurement on each pho-
ton to gain a small amount of information about
its momentum, followed by a strong measure-
ment that postselects the subensemble of pho-
tons arriving at a particular position [see (22) for
more details]. We used the polarization degree
of freedom of the photons as a pointer that
weakly couples to and measures the momentum
of the photons. This weak momentum measure-
ment does not appreciably disturb the system,
and interference is still observed. The two mea-
surements must be repeated on a large ensemble
of particles in order to extract a useful amount
of information about the system. From this set
of measurements, we can determine the average
momentum of the photons reaching any partic-
ular position in the image plane, and, by repeat-
ing this procedure in a series of planes, we can
reconstruct trajectories over that range. In this
sense, weak measurement finally allows us to
speak about what happens to an ensemble of
particles inside an interferometer.

Our quantum particles are single photons
emitted by a liquid helium-cooled InGaAs quan-
tum dot (23, 24) embedded in a GaAs/AlAs mi-
cropillar cavity. The dot is optically pumped by a
CW laser at 810 nm and emits single photons at
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Fig. 2. Measured intensities (photon counts) of
the two circular polarization components of |y〉,
measured on the CCD screen (red and blue curves),
as well as the weak momentum values calculated
from these intensities (black) for imaging planes at
(A) z = 3.2 m, (B) z = 4.5 m, (C) z = 5.6 m, and (D)
z = 7.7 m. The red and blue data points are the
intensity data with constant background sub-
tracted. The errors for the momentum values were
calculated by simulating the effect of Poissonian
noise in the photon counts. The magenta curve
shows momentum values obtained from enforcing
probability density conservation between adjacent
z planes. Because of the coarse-grained averag-
ing over three imaging planes, the probability-
conserving momentum values are not as sensitive
as the measured weak momentum values to high-
ly localized regions in the pattern with steep mo-
mentum gradients.

Fig. 3. The reconstructed
average trajectories of an
ensemble of single photons
in the double-slit appara-
tus. The trajectories are re-
constructed over the range
2.75 T 0.05 to 8.2 T 0.1 m
byusing themomentumdata
(black points in Fig. 2) from
41 imaging planes. Here,
80 trajectories are shown.
To reconstruct a set of tra-
jectories, we determined the
weak momentum values for
the transverse x positions at
the initial plane. On the basis
of this initial position and
momentum information, the
x position on the subsequent
imaging plane that each
trajectory lands is calculated, and the measured weak momentum value kx at this point found. This
process is repeated until the final imaging plane is reached and the trajectories are traced out. If a
trajectory lands on a point that is not the center of a pixel, then a cubic spline interpolation between
neighboring momentum values is used.
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Suggestive of trajectories for a bunch
of particles which repel one another.
This is not to be taken literally.
But why not?
Schiff & Poirier, J. Chem. Phys. (2012)
“Quantum Mechanics without
Wavefunctions” developed this theory
for a continuous ensemble of particles.
Shortly after (and in ignorance of) this,
we had a very similar idea.
But we think it is difficult to imagine
what a continuous ensemble means,
so we are trying to develop the theory
for a finite (but very large) ensembles.
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sarily gives up the option of observing the other
(1–6). However, it is possible to “weakly” mea-
sure a system, gaining some information about
one property without appreciably disturbing the
future evolution (7); although the information ob-
tained from any individual measurement is lim-
ited, averaging over many trials determines an
accurate mean value for the observable of interest,
even for subensembles defined by some subse-

quent selection (perhaps even on a complementary
observable). It was recently pointed out (8) that
this provides a natural way to operationally de-
fine a set of particle trajectories: One can ascer-
tain the mean momentum of the subensemble of
particles that arrive at any given position, and, by
thus determining the momentum at many posi-
tions in a series of planes, one can experimentally
reconstruct a set of average trajectories. We use
a modified version of this protocol to reconstruct
the “weak-valued trajectories” followed by single
photons as they undergo two-slit interference. In
the case of single-particle quantum mechanics,
the trajectories measured in this fashion repro-
duce those predicted in the Bohm–de Broglie
interpretation of quantum mechanics (9, 10).

Weak measurements, first proposed 2 decades
ago (7, 11), have recently attracted widespread
attention as a powerful tool for investigating fun-
damental questions in quantum mechanics (12–15)
and have generated excitement for their potential
applications to enhancing precision measurement
(16, 17). In a typical von Neumann measure-
ment, an observable of a system is coupled to a
measurement apparatus or “pointer” via its mo-
mentum. This coupling leads to an average shift
in the pointer position that is proportional to the
expectation value of the system observable. In a
“strong” measurement, this shift is large relative
to the initial uncertainty in pointer position, so
that significant information is acquired in a single
shot. However, this implies that the pointer mo-
mentum must be very uncertain, and it is this
uncertainty that creates the uncontrollable, irrevers-
ible disturbance associated with measurement.
In a “weak” measurement, the pointer shift is
small and little information can be gained on a
single shot; but, on the other hand, there may be
arbitrarily little disturbance imparted to the sys-
tem. It is possible to subsequently postselect the
system on a desired final state. Postselecting on

a final state allows a particular subensemble to
be studied, and the mean value obtained from
repeating the weak measurement many times is
known as the weak value. Unlike the results of
strong measurements, weak values are not con-
strained to lie within the eigenvalue spectrum of
the observable being measured (7). This has led
to controversy over the meaning and role of weak
values, but continuing research has made strides
in clarifying their interpretation and demonstrat-
ing a variety of situations in which they are clearly
useful (16–21).

In our experiment, we sent an ensemble of
single photons through a two-slit interferometer
and performed a weak measurement on each pho-
ton to gain a small amount of information about
its momentum, followed by a strong measure-
ment that postselects the subensemble of pho-
tons arriving at a particular position [see (22) for
more details]. We used the polarization degree
of freedom of the photons as a pointer that
weakly couples to and measures the momentum
of the photons. This weak momentum measure-
ment does not appreciably disturb the system,
and interference is still observed. The two mea-
surements must be repeated on a large ensemble
of particles in order to extract a useful amount
of information about the system. From this set
of measurements, we can determine the average
momentum of the photons reaching any partic-
ular position in the image plane, and, by repeat-
ing this procedure in a series of planes, we can
reconstruct trajectories over that range. In this
sense, weak measurement finally allows us to
speak about what happens to an ensemble of
particles inside an interferometer.

Our quantum particles are single photons
emitted by a liquid helium-cooled InGaAs quan-
tum dot (23, 24) embedded in a GaAs/AlAs mi-
cropillar cavity. The dot is optically pumped by a
CW laser at 810 nm and emits single photons at
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Fig. 2. Measured intensities (photon counts) of
the two circular polarization components of |y〉,
measured on the CCD screen (red and blue curves),
as well as the weak momentum values calculated
from these intensities (black) for imaging planes at
(A) z = 3.2 m, (B) z = 4.5 m, (C) z = 5.6 m, and (D)
z = 7.7 m. The red and blue data points are the
intensity data with constant background sub-
tracted. The errors for the momentum values were
calculated by simulating the effect of Poissonian
noise in the photon counts. The magenta curve
shows momentum values obtained from enforcing
probability density conservation between adjacent
z planes. Because of the coarse-grained averag-
ing over three imaging planes, the probability-
conserving momentum values are not as sensitive
as the measured weak momentum values to high-
ly localized regions in the pattern with steep mo-
mentum gradients.

Fig. 3. The reconstructed
average trajectories of an
ensemble of single photons
in the double-slit appara-
tus. The trajectories are re-
constructed over the range
2.75 T 0.05 to 8.2 T 0.1 m
byusing themomentumdata
(black points in Fig. 2) from
41 imaging planes. Here,
80 trajectories are shown.
To reconstruct a set of tra-
jectories, we determined the
weak momentum values for
the transverse x positions at
the initial plane. On the basis
of this initial position and
momentum information, the
x position on the subsequent
imaging plane that each
trajectory lands is calculated, and the measured weak momentum value kx at this point found. This
process is repeated until the final imaging plane is reached and the trajectories are traced out. If a
trajectory lands on a point that is not the center of a pixel, then a cubic spline interpolation between
neighboring momentum values is used.
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Suggestive of trajectories for a bunch
of particles which repel one another.
This is not to be taken literally.
But why not?
Schiff & Poirier, J. Chem. Phys. (2012)
“Quantum Mechanics without
Wavefunctions” developed this theory
for a continuous ensemble of particles.
Shortly after (and in ignorance of) this,
we had a very similar idea.
But we think it is difficult to imagine
what a continuous ensemble means,
so we are trying to develop the theory
for a finite (but very large) ensembles.
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sarily gives up the option of observing the other
(1–6). However, it is possible to “weakly” mea-
sure a system, gaining some information about
one property without appreciably disturbing the
future evolution (7); although the information ob-
tained from any individual measurement is lim-
ited, averaging over many trials determines an
accurate mean value for the observable of interest,
even for subensembles defined by some subse-

quent selection (perhaps even on a complementary
observable). It was recently pointed out (8) that
this provides a natural way to operationally de-
fine a set of particle trajectories: One can ascer-
tain the mean momentum of the subensemble of
particles that arrive at any given position, and, by
thus determining the momentum at many posi-
tions in a series of planes, one can experimentally
reconstruct a set of average trajectories. We use
a modified version of this protocol to reconstruct
the “weak-valued trajectories” followed by single
photons as they undergo two-slit interference. In
the case of single-particle quantum mechanics,
the trajectories measured in this fashion repro-
duce those predicted in the Bohm–de Broglie
interpretation of quantum mechanics (9, 10).

Weak measurements, first proposed 2 decades
ago (7, 11), have recently attracted widespread
attention as a powerful tool for investigating fun-
damental questions in quantum mechanics (12–15)
and have generated excitement for their potential
applications to enhancing precision measurement
(16, 17). In a typical von Neumann measure-
ment, an observable of a system is coupled to a
measurement apparatus or “pointer” via its mo-
mentum. This coupling leads to an average shift
in the pointer position that is proportional to the
expectation value of the system observable. In a
“strong” measurement, this shift is large relative
to the initial uncertainty in pointer position, so
that significant information is acquired in a single
shot. However, this implies that the pointer mo-
mentum must be very uncertain, and it is this
uncertainty that creates the uncontrollable, irrevers-
ible disturbance associated with measurement.
In a “weak” measurement, the pointer shift is
small and little information can be gained on a
single shot; but, on the other hand, there may be
arbitrarily little disturbance imparted to the sys-
tem. It is possible to subsequently postselect the
system on a desired final state. Postselecting on

a final state allows a particular subensemble to
be studied, and the mean value obtained from
repeating the weak measurement many times is
known as the weak value. Unlike the results of
strong measurements, weak values are not con-
strained to lie within the eigenvalue spectrum of
the observable being measured (7). This has led
to controversy over the meaning and role of weak
values, but continuing research has made strides
in clarifying their interpretation and demonstrat-
ing a variety of situations in which they are clearly
useful (16–21).

In our experiment, we sent an ensemble of
single photons through a two-slit interferometer
and performed a weak measurement on each pho-
ton to gain a small amount of information about
its momentum, followed by a strong measure-
ment that postselects the subensemble of pho-
tons arriving at a particular position [see (22) for
more details]. We used the polarization degree
of freedom of the photons as a pointer that
weakly couples to and measures the momentum
of the photons. This weak momentum measure-
ment does not appreciably disturb the system,
and interference is still observed. The two mea-
surements must be repeated on a large ensemble
of particles in order to extract a useful amount
of information about the system. From this set
of measurements, we can determine the average
momentum of the photons reaching any partic-
ular position in the image plane, and, by repeat-
ing this procedure in a series of planes, we can
reconstruct trajectories over that range. In this
sense, weak measurement finally allows us to
speak about what happens to an ensemble of
particles inside an interferometer.

Our quantum particles are single photons
emitted by a liquid helium-cooled InGaAs quan-
tum dot (23, 24) embedded in a GaAs/AlAs mi-
cropillar cavity. The dot is optically pumped by a
CW laser at 810 nm and emits single photons at
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Fig. 2. Measured intensities (photon counts) of
the two circular polarization components of |y〉,
measured on the CCD screen (red and blue curves),
as well as the weak momentum values calculated
from these intensities (black) for imaging planes at
(A) z = 3.2 m, (B) z = 4.5 m, (C) z = 5.6 m, and (D)
z = 7.7 m. The red and blue data points are the
intensity data with constant background sub-
tracted. The errors for the momentum values were
calculated by simulating the effect of Poissonian
noise in the photon counts. The magenta curve
shows momentum values obtained from enforcing
probability density conservation between adjacent
z planes. Because of the coarse-grained averag-
ing over three imaging planes, the probability-
conserving momentum values are not as sensitive
as the measured weak momentum values to high-
ly localized regions in the pattern with steep mo-
mentum gradients.

Fig. 3. The reconstructed
average trajectories of an
ensemble of single photons
in the double-slit appara-
tus. The trajectories are re-
constructed over the range
2.75 T 0.05 to 8.2 T 0.1 m
byusing themomentumdata
(black points in Fig. 2) from
41 imaging planes. Here,
80 trajectories are shown.
To reconstruct a set of tra-
jectories, we determined the
weak momentum values for
the transverse x positions at
the initial plane. On the basis
of this initial position and
momentum information, the
x position on the subsequent
imaging plane that each
trajectory lands is calculated, and the measured weak momentum value kx at this point found. This
process is repeated until the final imaging plane is reached and the trajectories are traced out. If a
trajectory lands on a point that is not the center of a pixel, then a cubic spline interpolation between
neighboring momentum values is used.
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Suggestive of trajectories for a bunch
of particles which repel one another.
This is not to be taken literally.
But why not?
Schiff & Poirier, J. Chem. Phys. (2012)
“Quantum Mechanics without
Wavefunctions” developed this theory
for a continuous ensemble of particles.
Shortly after (and in ignorance of) this,
we had a very similar idea.
But we think it is difficult to imagine
what a continuous ensemble means,
so we are trying to develop the theory
for a finite (but very large) ensembles.
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sarily gives up the option of observing the other
(1–6). However, it is possible to “weakly” mea-
sure a system, gaining some information about
one property without appreciably disturbing the
future evolution (7); although the information ob-
tained from any individual measurement is lim-
ited, averaging over many trials determines an
accurate mean value for the observable of interest,
even for subensembles defined by some subse-

quent selection (perhaps even on a complementary
observable). It was recently pointed out (8) that
this provides a natural way to operationally de-
fine a set of particle trajectories: One can ascer-
tain the mean momentum of the subensemble of
particles that arrive at any given position, and, by
thus determining the momentum at many posi-
tions in a series of planes, one can experimentally
reconstruct a set of average trajectories. We use
a modified version of this protocol to reconstruct
the “weak-valued trajectories” followed by single
photons as they undergo two-slit interference. In
the case of single-particle quantum mechanics,
the trajectories measured in this fashion repro-
duce those predicted in the Bohm–de Broglie
interpretation of quantum mechanics (9, 10).

Weak measurements, first proposed 2 decades
ago (7, 11), have recently attracted widespread
attention as a powerful tool for investigating fun-
damental questions in quantum mechanics (12–15)
and have generated excitement for their potential
applications to enhancing precision measurement
(16, 17). In a typical von Neumann measure-
ment, an observable of a system is coupled to a
measurement apparatus or “pointer” via its mo-
mentum. This coupling leads to an average shift
in the pointer position that is proportional to the
expectation value of the system observable. In a
“strong” measurement, this shift is large relative
to the initial uncertainty in pointer position, so
that significant information is acquired in a single
shot. However, this implies that the pointer mo-
mentum must be very uncertain, and it is this
uncertainty that creates the uncontrollable, irrevers-
ible disturbance associated with measurement.
In a “weak” measurement, the pointer shift is
small and little information can be gained on a
single shot; but, on the other hand, there may be
arbitrarily little disturbance imparted to the sys-
tem. It is possible to subsequently postselect the
system on a desired final state. Postselecting on

a final state allows a particular subensemble to
be studied, and the mean value obtained from
repeating the weak measurement many times is
known as the weak value. Unlike the results of
strong measurements, weak values are not con-
strained to lie within the eigenvalue spectrum of
the observable being measured (7). This has led
to controversy over the meaning and role of weak
values, but continuing research has made strides
in clarifying their interpretation and demonstrat-
ing a variety of situations in which they are clearly
useful (16–21).

In our experiment, we sent an ensemble of
single photons through a two-slit interferometer
and performed a weak measurement on each pho-
ton to gain a small amount of information about
its momentum, followed by a strong measure-
ment that postselects the subensemble of pho-
tons arriving at a particular position [see (22) for
more details]. We used the polarization degree
of freedom of the photons as a pointer that
weakly couples to and measures the momentum
of the photons. This weak momentum measure-
ment does not appreciably disturb the system,
and interference is still observed. The two mea-
surements must be repeated on a large ensemble
of particles in order to extract a useful amount
of information about the system. From this set
of measurements, we can determine the average
momentum of the photons reaching any partic-
ular position in the image plane, and, by repeat-
ing this procedure in a series of planes, we can
reconstruct trajectories over that range. In this
sense, weak measurement finally allows us to
speak about what happens to an ensemble of
particles inside an interferometer.

Our quantum particles are single photons
emitted by a liquid helium-cooled InGaAs quan-
tum dot (23, 24) embedded in a GaAs/AlAs mi-
cropillar cavity. The dot is optically pumped by a
CW laser at 810 nm and emits single photons at
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Fig. 2. Measured intensities (photon counts) of
the two circular polarization components of |y〉,
measured on the CCD screen (red and blue curves),
as well as the weak momentum values calculated
from these intensities (black) for imaging planes at
(A) z = 3.2 m, (B) z = 4.5 m, (C) z = 5.6 m, and (D)
z = 7.7 m. The red and blue data points are the
intensity data with constant background sub-
tracted. The errors for the momentum values were
calculated by simulating the effect of Poissonian
noise in the photon counts. The magenta curve
shows momentum values obtained from enforcing
probability density conservation between adjacent
z planes. Because of the coarse-grained averag-
ing over three imaging planes, the probability-
conserving momentum values are not as sensitive
as the measured weak momentum values to high-
ly localized regions in the pattern with steep mo-
mentum gradients.

Fig. 3. The reconstructed
average trajectories of an
ensemble of single photons
in the double-slit appara-
tus. The trajectories are re-
constructed over the range
2.75 T 0.05 to 8.2 T 0.1 m
byusing themomentumdata
(black points in Fig. 2) from
41 imaging planes. Here,
80 trajectories are shown.
To reconstruct a set of tra-
jectories, we determined the
weak momentum values for
the transverse x positions at
the initial plane. On the basis
of this initial position and
momentum information, the
x position on the subsequent
imaging plane that each
trajectory lands is calculated, and the measured weak momentum value kx at this point found. This
process is repeated until the final imaging plane is reached and the trajectories are traced out. If a
trajectory lands on a point that is not the center of a pixel, then a cubic spline interpolation between
neighboring momentum values is used.
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Suggestive of trajectories for a bunch
of particles which repel one another.
This is not to be taken literally.
But why not?
Schiff & Poirier, J. Chem. Phys. (2012)
“Quantum Mechanics without
Wavefunctions” developed this theory
for a continuous ensemble of particles.
Shortly after (and in ignorance of) this,
we had a very similar idea.
But we think it is difficult to imagine
what a continuous ensemble means,
so we are trying to develop the theory
for a finite (but very large) ensembles.
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Many Interacting Worlds One-dimensional Case

A single particle; many worlds

Consider a “world” comprising a single nonrelativistic particle of
mass m, in one spatial dimension with potential V (q).
Let there be N � 1 worlds {xn}Nn=1: xn < xn+1, for all n.
Say the xn(t0) are arranged with a slowly varying inter-world
separation, sn

0 ≡ xn+1(t0)− xn(t0) ∼ N−1:

sn
0 − sn+1

0 = sn
0 ×O(N−1)

Say the initial velocities vn
0 = ẋn(t0) are also smoothly varying:

vn
0 − vn+1

0 = vn
0 ×O(N−1).

The initial density and velocities of these worlds correspond to a
virtual ensemble of N Bohmian particles for the wavefunction

ψ0(xn) = [Nsn
0 ]−1/2 exp

[
i
m
~

n−1∑
n′=1

vn′
0 sn′

0

]
.
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Many Interacting Worlds One-dimensional Case

A single particle; many interacting worlds

However,
there is no wavefunction in the ontology of our theory.
our ensemble of worlds is real, not virtual.
this is necessary because our worlds interact.

The world-positions evolve via Newton’s equations

mẍn(t) = − ∂

∂xn

[
V (xn) +

∑
n′

Q3

(
xn′−1, xn′ , xn′+1

)]
.

Here the “3-body” (3-world) “local” potential can be chosen as

Q3

(
xn−1, xn, xn+1

)
=

~2

8m

[
1

xn+1 − xn
− 1

xn − xn−1

]2

.

Then, in the limit N →∞, we believe we should recover the
(virtual) Bohmian ensemble.

Wiseman, Deckert & Hall (Griffith University) Weak Values→Bohm→Many Worlds EmQM, Vienna, 2013 16 / 30



Many Interacting Worlds One-dimensional Case

It seems to work! up to some tbreak(N).

Blue curves = sub-set of our
many (100) interacting
worlds, with vn

0 ≡ 0 and a
bimodal distribution.

Contour shading of |ψt |2
with ψ0 as per {xn

0 , v
n
0 },

evolved via Schrödinger’s
equation.

Red curves = corresponding
Bohmian ensemble with
velocities determined by

vBohm(x) =
~
m

Im
ψ′t (x)

ψt (x)
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Many Interacting Worlds One-dimensional Case

Analytical results from E =
∑

[mẋ2 + V + Q3]

Ehrenfest’s theorem, as in CM and QM, for all N,
d
dt
〈x〉 =

1
m
〈mẋ〉, d

dt
〈mẋ〉 = −〈V ′(x)〉

for the (real!) ensemble averages e.g. 〈x〉 ≡ N−1∑N
n=1 xn.

Ensemble spreading

Vt [x ] = V0[x ] +
2t
m

Cov0[x ,mẋ ] +
t2

m

[
2〈E〉 −m〈ẋ〉2

]
as in QM and CM, for all N.
Qualitative explanation for nonclassical barrier transmission and
nonclassical reflection, via the quantum repulsion for N > 1.
The harmonic oscillator ground configuration has an energy

〈E〉 =
N − 1

N
~ω
2
,

as in CM for N = 1 and as in QM in the limit N →∞.
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Many Interacting Worlds From Bohmian Mechanics to Many Interacting Worlds

Bohm’s Bohmian Mechanics
For simplicity consider a world comprising P scalar nonrelativistic
distinguishable particles, and no fields, in D-dimensional space.
e.g. for D = 3 the pth particle has position (q3p−2,q3p−1,q3p)>.

Define the world-configuration q = {q1, · · · ,qK}>, K = DP.

i~ ∂
∂t Ψ(q, t) =

[∑K
k=1 mk

(
∂
∂qk

)2
+ V (q)

]
Ψ(q, t).

Then the initial world-configuration x(t0) chosen at random from
|Ψ(q, t0)|2, and velocity ẋk (t0) = m−1Re

[
−i~ ∂

∂qk
ln Ψ(q, t0)

]
q=x(0)

.

The Bohmian world-configuration evolves according to

mk ẍk (t) = − ∂

∂qk
[V (q) + Q(q)]

∣∣∣∣
q=x(t)

where Q(q) = |Ψ(q, t0)|−1∑K
k=1

−~2

2mk

(
∂
∂qk

)2
|Ψ(q, t0)|

Wiseman, Deckert & Hall (Griffith University) Weak Values→Bohm→Many Worlds EmQM, Vienna, 2013 20 / 30



Many Interacting Worlds From Bohmian Mechanics to Many Interacting Worlds

Many Bohmian Worlds

Consider N Bohmian worlds {xn}Nn=1 each as above.

∂
∂t Ψ(q, t) = −i

[∑K
k=1 mk

(
∂
∂qk

)2
+ V (q)

]
Ψ(q, t).

Each initial xn(t0) chosen according to |Ψ(x, t0)|2, with velocity
ẋn

k (t0) = Re
[
−i~ ∂

∂qk
ln Ψ(q, t0)

]
q=xn(0)

.

Each world-particle evolves according to

mk ẍn
k (t) = − ∂

∂qk
[V (q) + Q(q)]

∣∣∣∣
q=xn(t)

where Q(q) = |Ψ(q, t)|−1∑K
k=1

−~2

2mk

(
∂
∂qk

)2
|Ψ(q, t)|

lim
N→∞

N−1
N∑

n=1

δ (q− xn(t)) = |Ψ(q, t)|2.
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Many Interacting Worlds From Bohmian Mechanics to Many Interacting Worlds

Many “Locally” Interacting Worlds
(No Wavefunction!)

Consider N worlds {xn}Nn=1 with N a very large integer.
The set {xn(t0)} corresponds to some smooth distribution ρ(x, t0).

Each ẋn
k (t0) = Re

[
−i~ ∂

∂qk
ln Φ(q)

]
q=xn(0)

for some smooth

function Φ(q) satisfying |Φ(q)|2 = ρ(q, t0).
Each world-configuration evolves according to

mk ẍn
k (t) = − ∂V (q)

∂qk
+ F Q

k (q)

∣∣∣∣
q=xn(t)

where F Q
k (q) is the k th component of an approximation to the

quantum force determined by the local density of worlds (and its
derivatives) in the vicinity of q.
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Many Interacting Worlds From Bohmian Mechanics to Many Interacting Worlds

Ontology and Epistemology

All worlds are equally real.
Your consciousness supervenes on only one of the worlds.
Just as (here and in classical physics) your consciousness
supervenes only on one part (i.e. you) of a world.
There is no wavefunction and hence no collapse of the
wavefunction.
Effective wavefunction collapse is just Bayesian updating by some
consciousness about which world it is likely to supervene upon.
Agreement with standard QM emerges much the same as in BM
or the (noninteracting) MWI.
All quantum effects are a consequence of interaction between
worlds so they are observable!
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Conclusions

Summary

Weak values shed new light on fundamental questions in QM.

In particular they allow one to empirically obtain a unique Bohmian
velocity law, and thereby also single out the configuration as the
unique Bohmian reality.

The (empirically determinable) ensemble of Bohmian trajectories
suggests the evolution of a physical ensemble of particles with a
repulsive interaction.

This intuition can be made precise, at least in the 1D case, with an
explicit 3-body interaction.

We believe this can be generalized so that QM emerges from
Many Interacting Worlds.
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Why go past Bohmian Mechanics?

The wavefunction has the awkward role of both guiding the
evolution of the world-configuration and specifying a probability or
typicality measure for it.

It is not clear what a probability measure means for a single world.

Unlike Bohm’s hope, it has not led to a post-quantum theory with
definite new predictions.

It has been criticized as just “tacking on” something to the usual
formalism, rather than having quantum mechanics emerge from
something quite different.

The wavefunction exists in all of these places where the
world-configuration isn’t. i.e. the theory has ...
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... empty waves.
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Expected and Unexpected(?) Property of WVs.

Expected property: linearity —

Ĉ = Â + B̂ =⇒ E f〈Cw〉ρin = E f〈Aw〉ρin + E f〈Bw〉ρin .

Expected property: consistency with strong measurements —
if, with pre- (ρin) and post- (Ê f) selection a strong measurement of
A always would yield the answer λ, then E f〈Aw〉ρin = λ.

Unexpected(?) property: anomalous weak values —
it is not a theorem that

λmin(Â) ≤ E f〈Aw〉ρin ≤ λmax(Â).

Hence
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We have found that the usual measuring procedure for preselected and postselected ensembles of

quantum systems gives unusual results. Under some natural conditions of weakness of the measurement,

its result consistently defines a new kind of value for a quantum variable, which we call the weak value.

A description of the measurement of the weak value of a component of a spin for an ensemble of

preselected and postselected spin- 2 particles is presented.

PACS numbers: 03.65.Bz

This paper will describe an experiment which mea-

sures a spin component of a spin- —,
'
particle and yields a

result which is far from the range of "allowed" values.

We shall start with a brief description of the standard

measuring procedure. Considering measurements on an

ensemble of preselected and postselected systems, we

shall define a new concept: a weak value of a quantum
variable. And, finally, we shall describe the measure-

ment of the weak value on the example of a spin- —,
'
par-

ticle.

In quantum theory, the result of a measurement of a

variable A which has discrete eigenvalues a; must neces-

sarily be one of those values. The Hamiltonian of the

standard measurement procedure ' is
H =—g(t)qA,

where g(t) is a normalized function with a compact sup-

port near the time of measurement, and q is a canonical

variable of the measuring device with a conjugate

momentum tr. The initial state of the measuring device

in the ideal case has to be such that tr is well defined.

After the interaction (I) we can ascertain the value of A

from the final value of tr: A Btr.

As a reasonable approximation for a real situation, we

may take the initial state of the measuring device as a

Gaussian in the q (and consequently also in the tr) repre-

sentation. For this case, the Harniltonian (1) leads to

the transformation

tIH dte a2I4(—tea) 'g—
—(~—a;)'/4(4a)'iA

) (2)

where g; a; i A =a;) is the initial state of our system. If
the spread of the tt distribution hatt is much smaller than

the differences between the a;, then, after the interaction,
we shall be left with the mixture of Gaussians located

around a; correlated with different eigenstates of A. A
measurement of tt will then indicate the value of A.
In the opposite limit, where htr is much bigger than all

a;, the final probability distribution will be again close to

a Gaussian with the spread hatt. The center of the Gauss-

ian will be at the mean value of A: (A) =g; i a; i a;.
One measurement like this will give no information be-

cause htr»(A); but we can make this same measure-

ment on each member of an ensemble of W particles

prepared in the same state, and that will reduce the

relevant uncertainty by the factor I/JN, while the mean

value of the average will remain (A). By enlarging the

number X of particles in the ensemble, we can make the

measurement of (A) with any desired precision.

The outcome of the measurement is the average of the

obtained values tr of the measuring devices. As we ex-

plained earlier, it will yield, for a sufficiently large en-

semble, the value (A). We now raise the question: Can

we change the above outcome by taking into account the

values of tr of only a part of the original ensemble, per-

forming a particular postselection'? We may, of course,

achieve this rather trivially, by selecting only measuring

devices with large values of tt which we can always find,

since the original distribution of tt has nonvanishing tails.

But suppose we allow only postselection performed on

the particles themselves; how then can we maximize the

outcome for the average of tr? It might appear at first

that the best method for this will be to select all particles

for which the final state corresponds to the eigenvalue

a,„. But this is not the case. Surprisingly, we found

that by making other postselections we can obtain much

bigger outcomes.

Indeed, we shall now show that the above measure-

ments (with large t),tr), when applied to preselected and

postselected ensembles, may yield new values which lie

outside the "allowed" range, i.e., outside the interval

[min(a;), max(a;)]. The procedure of the measurement

is as follows. We start with a large ensemble of particles
prepared in the same initial state. Every particle in-

teracts with a separate measuring device, and then the

measurement which selects the final state is performed.

Finally, we take into account only the "readings" of the

1988 The American Physical Society 1351
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Just the trajectories

1 2 3 4 5 time
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configuration

World Trajectories
Initial Conditions: Equidistant configurations and positive velocity
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