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Approaches towards understanding quantum mechanics:

? Explain QM as an approximation to a deeper, underlying
theory

or

? Accept QM as it is, but explain how it relates to physical reality

or

? Explain how QM can emerge as an exact statistical description of an
underlying theory

Such an underlying deterministic theory (with “hidden variables”) must
be entirely different from what we are used to.

Difficulties: missing bounds on Lorentz boosts, divergences in space-time

curvature, black hole information . . .
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To set the scene: we have specific models that show classical
and quantum behavior at the same time.
Examples:

• quantum harmonic oscillator =
classical point moving around circle

• chiral Dirac fermion =
infinite plane moving with speed of light

• the bulk of a quantized superstring =
string on a lattice in transverse space
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The harmonic oscillator.

ϕ↔
Unitary

transformation

↔
Contin.
limit

Quantum Oscillator ↔ Classical periodic system
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Mapping of
quantum oscillator
states |x〉 onto
periodic system

states |ϕ 〉

〈ϕ | x 〉 =∑∞
n=0

Hn(x) e−
1
2
x2

2(n+1)/2π3/4
√
n!

e inϕ
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Massless chiral fermions (c = 1). Let

H = ~σ · ~p , p̂ = ± p

|p|
, s = (p̂ · ~σ) , r = 1

2 (p̂ · ~x + ~x · p̂) .

d

dt
~x = −i [~x , H] = ~σ ,

d

dt
~p = 0 ,

d

dt
σi = 2εijk pj σk ;

d

dt
p̂ = 0 ;

d

dt
(p̂ · ~σ) = ±2εijk (pi/|p|) pjσk = 0 ,

d

dt
(p̂ · ~x) = p̂ · ~σ , where p̂ = ± p

|p|
, and so

d

dt
p̂ = 0 ,

d

dt
s = 0 ,

d

dt
r = s = ± 1 .
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θ

ϕ
p

r

s

−s

The neutrino sheet
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d

dt
p̂ = 0 ,

d

dt
s = 0 ,

d

dt
r = s = ± 1 .

This is a sheet, moving with speed s = ±1 in orthogonal direction.
Mapping neutrino states ←→ orthonormal sheet states:

neutrino〈~p, α | p̂, pr , s〉sheet = pr δ
3(~p − p̂ pr )χs

α(p̂) ,

neutrino〈~x , α | p̂, r , s 〉sheet =
i

2π
δ ′(r − p̂ · ~x )χs

α(p̂) .

Another example of a result:

xneutrino
i =

p̂i (r − i
pr

) + εijk p̂j Lont
k /pr + 1

2pr

(
−ϕi s 1 + θi s 2 + p̂ 3√

1−p̂2
3

ϕi s 3

)
.

Here s 3 = s, ~θ and ~ϕ are orthogonal vectors in sheet,
s 1 and s 2 are spin flip operators.
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Real numbers and integers

Imagine that, in contrast to appearances, the real world, at its
most fundamental level, were not based on real numbers at all. We
here consider systems where only integers describe what happens
at a deeper level. Can one understand why our world appears to be
based on real numbers?

A mapping exists of

deterministic
(or quantum) physics

of a set of
2N integers Qi , Pi

onto

quantum physics
on N real observables
qi with N associated

momenta pi

Canonical Variables. Our mapping replaces quantum operator
sets pi and qi (with usual commutation relations) by sets of
universally commuting integers Pi and Qi .
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Operators

Define ε ≡ e2π = 535.5

Consider a Hilbert space spanned by the states
|Q〉 , Q = −∞, · · · , −2, −1, 0, 1, 2, , · · · , ∞.

Introduce the operator η , on the interval −1
2 < η < 1

2 , defined by:

εiNη|Q〉 = |Q + N〉 , and Fourier transform the function η

η =
∑
N

εiNη
∫ 1

2

−1
2

η dη ε−iNη =
∑
N 6=0

i(−1)N

2πN
εiNη ,

〈Q1|η|Q2〉 =
i

2π
(1− δQ1Q2)

(−1)Q1−Q2

Q1 − Q2
.

η

η

Q1|[ηQ , Q]|Q2〉 = i
2π

(
δQ1Q2 − (−1)Q2−Q1

)
= i

2π (I− |ψ〉〈ψ|) .

Find that [η, Q] = i
2π (I−|ψ〉〈ψ|) . |ψ〉 is an edge state
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-2 -1 0 1 2 3
=

(Fourier duality)

=

(
-2 -1 0 1 2 3

)
⊗ = ———————

Make real number operators −∞ < q <∞ as follows: q = Q + ηP

There is a unitary transformation of states from one basis to
another: 〈Q, ηP |ψ〉 = 〈q|ψ〉 .

Then transform 〈Q, ηP |ψ〉 =
∞∑

P=−∞
ε−iPηP 〈Q, P|ψ〉 = 〈q|ψ〉

Alternatively, find the p basis: 〈q|p〉 = εipq
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Matrix elements

(mathematical detail is skipped here: make the mapping P ↔ Q symmetric)

In Hilbert space {|Q, P〉}, we have

q = Q + aQ , p = P + aP ,

〈Q1,P1|aQ |Q2,P2〉 =
(−1)P+Q+1 iP

2π(P2 + Q2)

〈Q1,P1|aP |Q2,P2〉 =
(−1)P+Q iQ

2π(P2 + Q2)
.

From these:

[q, p] = i
2π (1−|ψedge〉〈ψedge|), with 〈Q,P|ψedge〉 = (−1)Q+P
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How does this work in QFT?

In ordinary QFT, the splitting φ(~x , t) → Q(x , t) + ηP(x , t) does
not survive the field equations, because splitting numbers
into“integer part” and “fractional part” is non-linear! It does work
with real numbers, if the field equations just interchange them.
In 1+1 dimensions, we have left movers and right movers :
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Free massless bosons in 1 + 1 dimensions

(∂2
x − ∂2

t )φ(x , t) = (∂x + ∂t)(∂x − ∂t)φ(x , t) = 0 →
φ(x , t) = φL(x + t) + φR(x − t) .

[φ(x , t), p(y , t)] = i
2π δ(x − y) ; H = π

∫
dx(p(x)2 + (∂xφ)2) .

Temporary: put x and t on a lattice.

φx ,t ≡ φ(x , t) ; [φx ,t , px ′,t ] = i
2π δx ,x ′ .

We have: φ(x , t + a) + φ(x , t − a) = φ(x − a, t) + φ(x + a, t) .

How to map this model one-to-one on the cellular automaton:

Q(x , t + a) + Q(x , t − a) = Q(x − a, t) + Q(x + a, t) ,

where Q are integers.
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p(x , t) = 1
2 aL(x + t) + 1

2 aR(x − t) .

aL = p + ∂xφ ; aR = p − ∂xφ .

Now, H = 1
2 (p2 + (∂xφ)2) = 1

4 (aL
2

+ aR
2
) ,

[aL, aR ] = 0 ; [aL(x), aL(y)] = [aR(y), aR(x)] = i
π∂xδ(x − y) ;

Our cellular automaton will be on a lattice: (x , t) ∈ Z . Therefore,
replace commutator by

[φ(x), p(y)] = i
2π δx ,y (1)

[aL(x), aL(y)] = ± i
2π if y = x ± 1 .

Replace real valued operators aL,R(x) by integer valued operators

AL,R(x) and their associated operators ηL,RA (x) :

aL(x) = AL(x) + ηLA(x − 1) .
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This splitting survives the evolution law:
aL, AL, and ηLA all move to the left, and aR , AR , and ηRA
move to the right.

Use the quantum hamiltonian (its space-lattice version) to describe
the evolution of this classical automaton. H = HL + HR .

In momentum space :

HL = 1
2

∫ 1/2

0
dk aL(k)aL(−k) M(k) ; M(κ) =

πκ

sin(2πκ)
.

This hamiltonian turns aL(x) into a pure left-mover, and
aR(x) into a right-mover:
AL(x + t) = Q(x , t + 1)− Q(x − 1, t)
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The (super) string is a 1+1 dimensional theory.

Here, the quantized field is the set of (super) string coordinates.
They are now replaced by the integer valued left- and right-movers
AL,R(x ± t).

Re-inserting the units gives a surprise: these coordinates form a
discrete lattice with lattice length a that is independent of the
lattice chosen on the world sheet. Even if you send the world sheet
to a continuum, the space-time lattice length a is

a = 2π
√
α′ .

Furthermore, as we will see later, the string constant ρ is not freely
adjustable.
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Fermions

A fermionic system can be handled the same way. Assume a
Majorana fermionic field ψA with ψA = ψ†A, A = 1, 2 (or,
A = L,R). Dirac equation: (γ+∂− + γ−∂+)ψ = 0.

One finds that ψµA(x , t) =

(
ψµL (x + t)

ψµR(x − t)

)
.

The corresponding classical theory now has Boolean degrees of
freedom, σ(x , t) = ±1, obeying the equations:

σ(x , t + 1) = σ(x − 1, t) σ(x − 1, t) σ(x , t − 1) .

This also splits up into left- and right-movers:

σ(x , t) = σL(x + t) σR(x − t) .
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Superstring theories contain D − 2 independent bosonic fields
(coordinates) and D − 2 Majorana fermion species. All these can
be mapped onto deterministic models processing integers as well as
±1’s (Boolean variables) classically.

So-far, we only handled strings of infinite length. We need to add:
(periodic) boundary conditions, interactions, and constraints.
The constraints give us the remaining two longitudunal
coordinates, needed to investigate Lorentz invariance.

The constraints only need to be imposed on the quantum side of
the theory, as is done in superstrings.
As is standard in Superstring theory, this restricts us to D = 10.

In Superstring Theory, both bosons and fermions obey gauge
conditions and constraints, which should determine ψ±A in terms of

atrL,R , and so also σ0
L,R and σD−1

L,R should be determined by the
transverse σaL,R
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The quantum – classical mapping in string theory is
not free of problems:

How do the longitudinal modes A±L,R(x , t) behave in the
deterministic model?

String theory wants us to pick a gauge such as A+
L,R(x , t) = 1.

Then

A−L,R(x , t) =
D−2∑
i−1

Ai
L,R

2
(x , t) → A−L,R(x , t) ≥ 1 ,

which does allow us to use X + as our time coordinate, but violates
Lorentz invariance.

How to do this better: is there a better gauge? What is then our
time coordinate?

We conclude: What we know is that the bulk of a superstring is a
deterministic, classical system.
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Bell’s inequalities

Theorem (Bell):
In any deterministic theory intended to reproduce quantum
behavior, (for instance when Einstein-Podolsky-Rosen photons are
observed through two spacelike separated filters, ~a and ~b), one will
have to allow superluminal signals between ~a and ~b.

... since we should be allowed to modify the settings ~a and/or ~b
any time, at free will...

But there is no “free will” in a deterministic theory
(Super-determinism).

Theorem: even so, you cannot avoid Bell’s inequalities!
unless you accept “ridiculous fine-tuning”, or “conspiracy”

Today’s claim: we never need actual signals going backwards in
time or faster than light. . . . but the problem is more basic than
Bell’s. What we do need . . .
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III

x

tQP

S

βα

ε

t = t
0

t = t
1

t = t
2

t = t
3

t = t
4

BobAlice

In the Bell experiment, at t = t0, one must demand that those
degrees of freedom that later force Alice and Bob to make their
decisions, and the source that emits two entangled particles, have
3 - body correlations of the form

〈 a b c 〉 ∝ | sin(a− b − c)| (or worse)
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What we do need is
non-locally correlated vacuum fluctuations.

Vacuum fluctuations are ubiquitous in QFT vacua.

And we need:
a conservation law for the ontological identity of states:

ontological states evolve into ontological states

Issue: This means that photons observed going through a
polarization filter are ontologocal. Therefore with that polarization,
they always were ontological in the past.

This is more elementary than the discussion of entangled states
in Bell’s inequality.
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Is this “conspiracy”? The ontological nature of a physical state is

conserved in time. If a photon is observed, at late times, to be in a given

polarization state, it has been in exactly the same state the moment it

was emitted by the source. The conspiracy argument now demands that

the “ontological basis” be unobservable! (as it is in string theory)

Shut up and calculate!

THE END
arXiv: 1204.4926
arXiv: 1205.4107
arXiv: 1207.3612
and to be published.
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PS
The ultimate model of nature will be very unconventional

It will have to solve many problems:

- Closure of the Lorentz group

- Black hole information

- Hierarchy

But humanity is smart — we will figure it out . . .
If I am correct:

No measurement problem
Collapse automatic

Born probabilities automatic
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